Advertisement

Stresses in inhomogeneous elastic–viscoelastic–elastic sandwich plates via hyperbolic shear deformation theory

  • A. M. Zenkour
  • H. F. El-Mekawy
Technical Paper
  • 78 Downloads

Abstract

A hyperbolic shear deformation theory is proposed to investigate the bending analysis of inhomogeneous elastic/viscoelastic/elastic (EVE) sandwich plates. The sandwich plate is consisting of two elastic material faces and viscoelastic material core. Three kinds of symmetric sandwich plates that are classified depending on thickness of each layer are presented. A fourth type of sandwich plate is considered without viscoelastic core. The equilibrium equations have been solved by using Illyushin’s approximation method as well as the effective moduli method. The deflection and stresses of simply supported EVE sandwich plates have been presented due to a hyperbolic theory and compared with those due to other familiar plate theories. The effect of different parameters on bending analysis of sandwich plates is discussed.

Keywords

Hyperbolic theory Sandwich plates Viscoelastic core Inhomogeneous 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Plantema FJ (1966) Sandwich construction. Wiley, New YorkGoogle Scholar
  2. 2.
    Whitney JM (1987) Structural analysis of laminated anisotropic plates. Technomic, LancasterGoogle Scholar
  3. 3.
    Vinson JR (1999) The behavior of sandwich structures of isotropic and composite materials. Technomic, LancasterGoogle Scholar
  4. 4.
    Reissner E (1947) On bending of elastic plates. Q Appl Math 5:55–68MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hoff NJ (1950) Bending and buckling of rectangular sandwich plates. NACA TN 2225, NovGoogle Scholar
  6. 6.
    Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12(2), Trans ASME 61:69–77Google Scholar
  7. 7.
    Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J Appl Mech 18:31–38zbMATHGoogle Scholar
  8. 8.
    Yang PC, Norris CH, Stavsky Y (1966) Elastic wave propagation in heterogeneous plates. Int J Solids Strut 2:665–684CrossRefGoogle Scholar
  9. 9.
    Reissner E (1985) Reflection on the theory of elastic plates. Appl Mech Rev 38:1453–1464CrossRefGoogle Scholar
  10. 10.
    Noor AK, Burton WS (1989) Refinement of higher-order laminated plate theories. Appl Mech Rev 42:1–13CrossRefGoogle Scholar
  11. 11.
    Reddy JN (1990) A review of refined theories of laminated composite plates. Shock Vib Dig 22:3–17CrossRefGoogle Scholar
  12. 12.
    Pagano NJ (1970) Exact solutions for rectangular bidirectional composite and sandwich plates. J Compos Mater 4(1):20–34CrossRefGoogle Scholar
  13. 13.
    Zenkour AM (2007) Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates. J Sand Strut Mater 9(3):213–238CrossRefGoogle Scholar
  14. 14.
    Pagano NJ, Hatfield SJ (1972) Elastic behaviour of multilayered bidirectional composite. AIAA J 10(12):931–933CrossRefGoogle Scholar
  15. 15.
    Noor AK, Peters JM, Burton WS (1994) Three-dimensional solutions for initially stressed structural sandwiches. J Eng Mech ASCE 120(2):284–303CrossRefGoogle Scholar
  16. 16.
    Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 1—deflection and stresses. Int J Solids Strut 42(18–19):5224–5242CrossRefzbMATHGoogle Scholar
  17. 17.
    Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2—buckling and free vibration. Int J Solids Strut 42(18–19):5243–5258CrossRefzbMATHGoogle Scholar
  18. 18.
    Hildebrand FB, Reissner E, Thomas GB (1949) Note on the foundations of the theory of small displacements of orthotropic shells. NACA TN-1833Google Scholar
  19. 19.
    Nelson RB, Lorch DR (1974) A refined theory for laminated orthotropic plates. ASME J Appl Mech 41:177–183CrossRefGoogle Scholar
  20. 20.
    Librescu L (1975) Elastostatics and kinematics of anisotropic and heterogeneous shell type structures. Noordhoff, GroningenzbMATHGoogle Scholar
  21. 21.
    Lo KH, Christensen RM, Wu EM (1977) A high order theory of plate deformation, part 1: homogeneous plates. ASME J Appl Mech 44(4):663–668CrossRefzbMATHGoogle Scholar
  22. 22.
    Christensen RM, Lo KH, Wu EM (1977) A high order theory of plate deformation, part 2: laminated plates. ASME J Appl Mech 44(4):669–676CrossRefzbMATHGoogle Scholar
  23. 23.
    Murthy MV (1981) An improved transverse shear deformation theory for laminated anisotropic plates. NASA Technical 1981:1903Google Scholar
  24. 24.
    Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752CrossRefzbMATHGoogle Scholar
  25. 25.
    Khdeir AA, Reddy JN (1989) Exact solutions for the transient response of symmetric cross ply laminates using a higher order plate theory. Compos Sci Technol 34(3):205–224CrossRefGoogle Scholar
  26. 26.
    Zenkour AM (2018) A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos Struct 201:38–48CrossRefGoogle Scholar
  27. 27.
    Reddy JN, Barbero EJ, Teply JL (1989) A plate bending element based on a generalized laminate plate theory. Int J Numer Mech Eng 28:2275–2292CrossRefzbMATHGoogle Scholar
  28. 28.
    Reddy JN, Khdeir AA (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAA J 27(12):1808–1817MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47(1–3):663–684CrossRefzbMATHGoogle Scholar
  30. 30.
    Zenkour AM (2006) Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model 30(1):67–84CrossRefzbMATHGoogle Scholar
  31. 31.
    Zenkour AM (2009) The refined sinusoidal theory for FGM plates on elastic foundations. Int J Mech Sci 51(11–12):869–880CrossRefGoogle Scholar
  32. 32.
    Soldatos KP (1992) A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech 94:195–220MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Soldatos KP, Timarci T (1993) A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories. Compos Strut 25(1–4):165–171CrossRefGoogle Scholar
  34. 34.
    Neves AMA, Ferreira AJM, Carrera E et al (2011) Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions. Mech Res Commun 38:368–371CrossRefzbMATHGoogle Scholar
  35. 35.
    Neves AMA, Ferreira AJM, Carrera E et al (2012) A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos B Eng 43:711–725CrossRefGoogle Scholar
  36. 36.
    Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN, Soares CMM (2012) A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos Struct 94:1814–1825CrossRefGoogle Scholar
  37. 37.
    Ranjbaran A, Khoshravan MR, Kharazi M (2014) Buckling analysis of sandwich plate using layerwise theory. J Mech Sci Technol 28(7):2769–2777CrossRefGoogle Scholar
  38. 38.
    Maturi DA, Ferreira AJM, Zenkour AM, Mashat DS (2014) Analysis of sandwich plates with a new layerwise formulation. Compos B 56:484–489CrossRefGoogle Scholar
  39. 39.
    Pandey S, Pradyumna S (2015) Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory. Eur J Mech A/Solids 51:55–66MathSciNetCrossRefGoogle Scholar
  40. 40.
    Rakočević M, Popović S, Ivanišević N (2017) A computational method for laminated composite plates based on layerwise theory. Compos B 122:202–218CrossRefGoogle Scholar
  41. 41.
    Xing YF, Wu Y, Liu B, Ferreira AJM, Neves AMA (2017) Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method. Compos Struct 170:158–168CrossRefGoogle Scholar
  42. 42.
    Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech Trans ASME 37(4):1031–1036CrossRefzbMATHGoogle Scholar
  43. 43.
    Bert CW (1973) Simplified analysis of elastic shear factors for beams of non-homogeneous cross-section. J Compos Mater 7:525–529CrossRefGoogle Scholar
  44. 44.
    Reissner E (1991) A mixed variational equation for a twelfth-order theory of bending of nonhomogeneous transversely isotropic plates. Comput Mech 7(5–6):255–260zbMATHGoogle Scholar
  45. 45.
    Reissner E (1994) On the equations of an eighth-order theory of nonhomogeneous transversely isotropic plates. Int J Solids Strut 31(1):89–96CrossRefzbMATHGoogle Scholar
  46. 46.
    Fares ME, Zenkour AM (1999) Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories. Compos Strut 44(4):279–287CrossRefGoogle Scholar
  47. 47.
    Zenkour AM, Fares ME (1999) Non-homogeneous response of cross-ply laminated elastic plates using a higher-order theory. Compos Strut 44(4):297–305CrossRefGoogle Scholar
  48. 48.
    Hashin Z (1965) Viscoelastic behavior of heterogeneous media. J Appl Mech Trans ASME 32:630–636CrossRefGoogle Scholar
  49. 49.
    DiTaranto RA (1965) Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. ASME J Appl Mech 32:881–886CrossRefGoogle Scholar
  50. 50.
    Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175CrossRefzbMATHGoogle Scholar
  51. 51.
    Douglas BE, Yang JCS (1978) Transverse compressional damping in the vibratory response of elastic–viscoelastic beams. AIAA J 16:925–930CrossRefGoogle Scholar
  52. 52.
    Wilson DW, Vinson JR (1984) Viscoelastic analysis of laminated plate buckling. AIAA J 22:982–988CrossRefzbMATHGoogle Scholar
  53. 53.
    Kim CG, Hong CS (1988) Viscoelastic sandwich plates with cross-ply faces. J Strut Eng 114:150–164CrossRefGoogle Scholar
  54. 54.
    Huang NN (1994) Viscoelastic buckling and post buckling of circular cylindrical laminated shells in hygrothermal environment. J Mar Sci Technol 2:9–16Google Scholar
  55. 55.
    Pan H (1966) Vibrations of viscoelastic plates. J de Mécanique 5:355–374zbMATHGoogle Scholar
  56. 56.
    Librescu L, Chandiramani NK (1989) Dynamic stability of transversely isotropic viscoelastic plates. JSound Vib 130:467–486CrossRefzbMATHGoogle Scholar
  57. 57.
    Zenkour AM (2004) Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. J Eng Math 50:75–93CrossRefzbMATHGoogle Scholar
  58. 58.
    Zenkour AM (2004) Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech 171:171–187CrossRefzbMATHGoogle Scholar
  59. 59.
    Allam MNM, Zenkour AM, El-Mekawy HF (2010) Bending response of inhomogeneous fiber-reinforced viscoelastic sandwich plates. Acta Mech 209:231–248CrossRefzbMATHGoogle Scholar
  60. 60.
    Zenkour AM (2011) Bending responses of an exponentially graded simply supported elastic/viscoelastic/elastic sandwich plate. Acta Mech Solida Sin 24(3):250–261CrossRefGoogle Scholar
  61. 61.
    Zenkour AM (2012) Viscoelastic analysis of an exponentially graded sandwich plate. J Mech Sci Technol 26(3):889–898MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zenkour AM, El-Mekawy HF (2014) Bending of inhomogeneous sandwich plates with viscoelastic cores. J Vibroeng 16(7):3260–3272Google Scholar
  63. 63.
    Pobedrya E (1976) Structural anisotropy in viscoelasticity. Polym Mech 12(4):557–561CrossRefGoogle Scholar
  64. 64.
    Illyushin A, Pobedria BE (1970) Foundations of mathematical theory of thermo viscoelasticity. Nauka, Moscow (in Russian) Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceKafrelsheikh UniversityKafrelsheikhEgypt
  3. 3.Quantitative Methods Unit, College of Business and EconomicsQassim UniversityBuraidahSaudi Arabia

Personalised recommendations