A filament modification approach for in situ ABS/OMMT nanocomposite development in extrusion-based 3D printing

  • Vishal FrancisEmail author
  • Prashant K. Jain
Technical Paper


In the present study, a filament modification approach is proposed for in situ nanocomposite development during the 3D printing process. The acrylonitrile butadiene styrene filament was modified by coating it with organically modified montmorillonite (OMMT)-based nanocomposite solution. On 3D printing with the modified filament, a fused network of nanoparticles and polymer develops on the perimeter of the deposited raster’s. This creates a unique mesostructure over the entire cross section of the 3D-printed part. Mechanical, thermal and dielectric properties were investigated to study the effect of filament alteration on 3D-printed parts. Microstructure and morphology of the nanocomposites were analyzed by XRD and SEM. The nanocomposite demonstrated 10.8% increment in Young’s modulus compared to pristine polymer due to the presence of stiffer OMMT nanoparticles. The ionic nature of OMMT contributed in enhancing the relative permittivity of the nanocomposite by 64%. Thermal stability of the nanocomposite was also enhanced, and the glass transition temperature was increased by 6.7ºC. Experimental data were compared with the rule of mixture and Halpin–Tsai composite models. Further, the mesostructure of 3D-printed parts was considered to modify the Halpin–Tsai composite model for 3D-printed parts.


Nanocomposite Nanoclay Organically modified montmorillonite 3D printing Fused deposition modeling 


  1. 1.
    Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B 80:369–378CrossRefGoogle Scholar
  2. 2.
    Chua CK, Leong KF, Lim CS (2003) Rapid prototyping principles and applications, 2nd edn. World Scientific, SingaporeCrossRefGoogle Scholar
  3. 3.
    Too MH, Leong KF, Chua CK, Du ZH, Yang SF, Cheah CM, Ho SL (2002) Investigation of 3D non-random porous structures by fused deposition modelling. Int J Adv Manuf Technol 19:217–223CrossRefGoogle Scholar
  4. 4.
    Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32:3448–3456CrossRefGoogle Scholar
  5. 5.
    Moscato S, Bahr R, Le T, Pasian M, Bozzi M, Perregrini L, Tentzeris MM (2016) Infill-dependent 3-D-printed material based on NinjaFlex filament for antenna applications. IEEE Antennas Wirel Propag Lett 15:1506–1509CrossRefGoogle Scholar
  6. 6.
    Masood SH, Song WQ (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25:587–594CrossRefGoogle Scholar
  7. 7.
    Goh GL et al (2016) Inkjet-printed patch antenna emitter for wireless communication application. Virtual Phys Prototyp 11:289–294CrossRefGoogle Scholar
  8. 8.
    Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257CrossRefGoogle Scholar
  9. 9.
    Bai J, Goodridge RD, Hague RJM, Song M (2014) Influence of carbon nanotubes on the rheology and dynamic mechanical properties of polyamide-12 for laser sintering. Polym Test 36:95–100CrossRefGoogle Scholar
  10. 10.
    Yuan S, Bai J, Chua CK, Wei J, Zhou K (2016) Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos Part A Appl Sci Manuf 90:699–710CrossRefGoogle Scholar
  11. 11.
    Jain PK, Pandey PM, Rao PVM (2009) Selective laser sintering of clay-reinforced polyamide. Polym Compos 31:732–743Google Scholar
  12. 12.
    Koo JH, Lao S, Ho W, Ngyuen K, Cheng J, Pilato L, Wissler G, Ervin M (2006) Polyamide nanocomposites for selective laser sintering. In: Proceedings of solid freeform fabrication symposium, pp 392–409Google Scholar
  13. 13.
    Gaikwad S, Tate J, Theodoropoulou N, Koo J (2012) Electrical and mechanical properties of PA11 blended with nanographene platelets using industrial twin-screw extruder for selective laser sintering. J Compos Mater 47:2973–2986CrossRefGoogle Scholar
  14. 14.
    Shofner ML, Lozano K, Rodrı FJ (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090CrossRefGoogle Scholar
  15. 15.
    Francis V, Jain PK (2016) Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys Prototyp 11:109–121CrossRefGoogle Scholar
  16. 16.
    Francis V, Jain PK (2015) Advances in nanocomposite materials for additive manufacturing. Int J Rapid Manuf 5:215–233CrossRefGoogle Scholar
  17. 17.
    Koo JH (2006) Polymer nanocomposites processing, characterization, and applications. McGraw-Hill Nanoscience and Technology SeriesGoogle Scholar
  18. 18.
    Yan CZ, Shi YS, Yang JS, Liu JH (2011) An organically modified montmorillonite/nylon-12 composite powder for selective laser sintering. Rapid Prototyp J 17:28–36CrossRefGoogle Scholar
  19. 19.
    Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627CrossRefGoogle Scholar
  20. 20.
    Javadi S, Razzaghi-Kashani M, Gharavi N (2008) The effect of organo-clay on the dielectric properties of silicone rubber. Smart Mater Struct 17:365–371Google Scholar
  21. 21.
    Azerag B, Azdast T, Doniavi A, Shishavan SM, Lee RE (2015) Structural properties of batch foamed acrylonitrile butadiene styrene/nanoclay nanocomposites. Int J Mech Mater Eng 10:19CrossRefGoogle Scholar
  22. 22.
    Shishavan SM, Azdast T, Ahmadi SR (2014) Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites. J Mater 58:527–534CrossRefGoogle Scholar
  23. 23.
    Wang S, Hu Y, Zong R, Tang Y, Chen Z, Fan W (2004) Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Appl Clay Sci 25:49–55CrossRefGoogle Scholar
  24. 24.
    Singh P, Ghosh AK (2014) Torsional, tensile and structural properties of acrylonitrile–butadiene–styrene clay nanocomposites. Mater Des 55:137–145CrossRefGoogle Scholar
  25. 25.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  26. 26.
    Dimitry OIH, Abdeen ZI, Ismail EA, Saad ALG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813CrossRefGoogle Scholar
  27. 27.
    Fulford AR, Wentworth SM (2005) Conductor and dielectric-property extraction using microstrip tee resonators. Microw Opt Technol Lett 47:14–16CrossRefGoogle Scholar
  28. 28.
    Kirschning M, Koster NHL, Jansen RH (1981) Accurate model for open end effect of microstrip lines. Electron Lett 17:123–125CrossRefGoogle Scholar
  29. 29.
    Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43:2819–2835CrossRefGoogle Scholar
  30. 30.
    Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30:8000–8009CrossRefGoogle Scholar
  31. 31.
    Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48:3790–3800CrossRefGoogle Scholar
  32. 32.
    Castles F, Isakov D, Lui A, Lei Q, Dancer CEJ, Wang Y, Janurudin JM, Speller SC, Grovenor CRM, Grant PS (2016) Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci Rep 6:22714CrossRefGoogle Scholar
  33. 33.
    Isakov DV, Lei Q, Castles F, Stevens CJ, Grovenor CRM, Grant PS (2016) 3D printed anisotropic dielectric composite with meta-material features. Mater Des 93:423–430CrossRefGoogle Scholar
  34. 34.
    Sengwa RJ, Choudhary S, Sankhla S (2009) Dielectric spectroscopy of hydrophilic polymers-montmorillonite clay nanocomposite aqueous colloidal suspension. Coll Surf A Physicochem Eng Asp 336:79–87CrossRefGoogle Scholar
  35. 35.
    Jeszka JK, Pietrzak L, Pluta M, Boiteux G (2010) Dielectric properties of polylactides and their nanocomposites with montmorillonite. J Non Cryst Solids 356:818–821CrossRefGoogle Scholar
  36. 36.
    Francis V, Jain PK (2017) 3D printed polymer dielectric substrates with enhanced permittivity by nanoclay inclusion. Virtual Phys Prototyp 12:107–115CrossRefGoogle Scholar
  37. 37.
    Halpin JLKJC (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–351CrossRefGoogle Scholar
  38. 38.
    Kalaitzidou K, Fukushima H, Miyagawa H, Drzal LT (2007) Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin–Tsai and Tandon–Weng models. Polym Eng Sci 47:1798–1803CrossRefGoogle Scholar
  39. 39.
    Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80CrossRefGoogle Scholar
  40. 40.
    Dayma N, Satapathy BK (2010) Morphological interpretations and micromechanical properties of polyamide-6/polypropylene-grafted-maleic anhydride/nanoclay ternary nanocomposites. Mater Des 31:4693–4703CrossRefGoogle Scholar
  41. 41.
    Mohapatra AK, Mohanty S, Nayak SK (2011) Modeling of the mechanical properties of polylactic acid/clay nanocomposites using composite theories. Int J Plast Technol 15:174–187CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DisciplinePDPM Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia

Personalised recommendations