Skip to main content
Log in

Effect of wire electrode and shielding gas compositions on the mechanical properties of DOMEX 700 steel welded by the GMAW-P process

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

High-strength steels such as DOMEX 700 combine high mechanical strength and great ductility. However, when processed by welding their microstructure could present grain growth and deleterious phase formation. Nevertheless, using high-power GMAW-P the effects of electrode and shielding gas composition on the mechanical and microstructure properties of DOMEX 700 welded joints need to be understood. Thus, wire electrodes such as AWS ER 90S-D2 (A1) and AWS ER 120S-G (A2), and shielding gases such as Ar + 15% CO2 (G1) and Ar + 8% CO2 (G2) were used and the microstructure of welded joints was analyzed through optical and scanning electron microscope (SEM). Mechanical properties of joints was characterized through joint tensile test, impact test from 20 to − 40 °C, and microhardness in the joint cross-sectional. It is possible to highlight the increase in strength and elongation values with the use of electrode A2, and reduction in impact energy values for specimens welded by gas mixture G2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koo JY, Luton MJ, Bangaru NV, Petkovic RA (2003) Metallurgical design of ultra-high strength steels for gas pipelines. In: International offshore and polar engineering conference. ISBN 1-880653-60-5 (Set); ISSN 1098–6189 (Set), Honolulu, Hawaii, USA, May 25–30, 2003

  2. Pickering FB (1975) High-strength, low-alloy steels—a decade of progress. In: Micro-alloying 75, proceedings. Union Carbide Corp., New York, p 9

  3. Ramazani A, Mukherjee K, Abdurakhmanov A, Prahl U, Schleser M, Reisgen U, Bleck W (2014) Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel. Mater Sci Eng A 589:1–14

    Article  Google Scholar 

  4. Cuiuri D, Norrish J, Cook CD (2002) New approaches to controlling unstable gas metal arc welding. Australas Weld 47(3):39–47

    Google Scholar 

  5. Dutra JC, Silva RHG, Savi BM, Marques C, Alarcon OE (2015) Metallurgical characterization of the 5083H116 aluminum alloy welded with the cold metal transfer process and two different wire-electrodes (5183 and 5087). Weld World 59:797–807

    Article  Google Scholar 

  6. Dutra JC, Silva RHG, Marques C (2016) A new approach for MIG/MAG cladding with Inconel 625. Weld World 60:1201–1209

    Article  Google Scholar 

  7. Praveen P, Yarlagadda PKDV, Kang MJ (2005) Advancements in pulse gas metal arc welding. J Mater Process Technol 164–165:1113–1119

    Article  Google Scholar 

  8. Stol I, Williams KL, Gaydos D (2006) Back to basics: using a buried gas metal arc for seam welds. Weld J 85(4):28

    Google Scholar 

  9. Mirzaei M, Jeshvaghani RA, Yazdipour A, Madar KZ (2013) Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel. Mater Des 51:709–713

    Article  Google Scholar 

  10. Devakumaran K, Ghosh PK (2010) Thermal characteristics of weld and HAZ during pulse current gas metal arc weld bead deposition on HSLA steel plate. Mater Manuf Process 25:616–630

    Article  Google Scholar 

  11. Kulkarni SG, Ghosh PK, Ray S (2008) Improvement of weld characteristics by variation in welding processes and parameters in joining of thick wall 304 LN stainless steel pipe. ISIJ Int 48:1560–1569

    Article  Google Scholar 

  12. Wu CS, Chen MA, Lu YF (2005) Effect of current waveforms on metal transfer in pulsed gas metal arc welding. Meas Sci Technol 16(12):2459

    Article  Google Scholar 

  13. Lu L, Fan D, Huang J, Shi Y (2012) Decoupling control scheme for pulsed GMAW process of aluminum. J Mater Process Technol 212:801–807

    Article  Google Scholar 

  14. Stenbakca N, Persson K (1989) Shielding gases for gas metal arc welding. Weld J Miami 8(11):41–47

    Google Scholar 

  15. Gladman T (1997) The physical metallurgy of microalloyed steels. The Institute of Metals, London, pp 349–357

    Google Scholar 

  16. Pereloma E, Edmonds DV (eds) (2012) Phase transformation in steel. Volume 1: fundamentals and diffusion-controlled transformations. Woodehead Publishing Limited, Oxford, pp 157–183

  17. ASTM E8/E8M-16a (2016) Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken

    Google Scholar 

  18. ASTM E23-16b (2016) Standard test methods for notched bar impact testing of metallic materials. ASTM International, West Conshohocken

    Google Scholar 

  19. ASTM E384-16b (2016) Standard test methods for notched bar impact testing of metallic materials. ASTM International, West Conshohocken

    Google Scholar 

  20. Thewlis G (2004) Classification and quantification of microstructures in steels. Mater Sci Technol 20:143–160

    Article  Google Scholar 

  21. Zhang C, Yang J, Hu X, Lu P, Zhao M (2012) Microstructure characteristics and fatigue properties of welded HSLA with and without buffer layer. Mater Sci Eng A 546:169–179

    Article  Google Scholar 

  22. Jing-hong Y, Qing-you L, Dong-bai S, Xiang-yang L (2010) Microstructure and transformation characteristics of acicular ferrite in high niobium-bearing microalloyed steel. J Iron Steel Res Int 17(6):53–59

    Article  Google Scholar 

  23. Vaidya V (2002) Shielding gas mixtures for semiautomatic welds. Weld J Miami 81(9):43–48

    Google Scholar 

  24. Costa MCMS, Starling CMD, Modenesi PJ (2010) Characterization of GMAW arc instability phenomena related to low oxidation potential shielding gases. Weld Int 24(3):214–221

    Article  Google Scholar 

  25. Pamnani R, Jayakumar T, Vasudevan M, Sakthivel T (2016) Investigations on the impact toughness of HSLA steel arc welded joints. J Manuf Process 21:75–86

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Riffel.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haupt, W., Riffel, K.C., Israel, C.L. et al. Effect of wire electrode and shielding gas compositions on the mechanical properties of DOMEX 700 steel welded by the GMAW-P process. J Braz. Soc. Mech. Sci. Eng. 40, 174 (2018). https://doi.org/10.1007/s40430-018-1117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1117-5

Keywords

Navigation