Experimental and artificial neural network ANN investigation of bending fatigue behavior of glass fiber/polyester composite shafts

  • Abdul Kareem F. Hassan
  • Luay Sadiq Mohammed
  • Husam Jawad Abdulsamad
Technical Paper
  • 22 Downloads

Abstract

This study includes an experimental investigation for rotating bending fatigue in five types of composite material shaft with comparison to a standard type made of pure polyester material. In addition, an artificial neural network ANN prediction is compared with experimental part. The five types vary according to the type of glass fiber fabric (thin and thick fiber fabric) and fiber volume fraction (10.2 and 14.6% for thin fibers, and 14.6, 29.3 and 43.9% for thick fibers). Tensile tests are performed to identify the range of applied fatigue stress for every type. Specimens weight is measured in order to calculate the ratio of strength to weight. The rotating bending fatigue tests are performed to record the fatigue behavior for each type. Results show that the type with (29.3%) volume fraction of thick fiber has the maximum tensile strength to weight ratio with (290%) improvement compared with the standard type. The best fatigue behavior is for type with (14.6%) volume fraction of thin glass fibers. This type has the maximum value of fatigue stress at life limit of (106 cycles) with (362%) improvement compared with the standard type. Then, the types with (29.3%) and (43.9%) volume fractions of thick glass fibers make (356%) and (331%) improvement of fatigue stress, respectively. The ANN gives satisfactory results and it is a good prediction tool for fatigue life of composite materials.

Keywords

Composite shaft Fatigue ANN Glass/polyester composite 

References

  1. 1.
    Couillard RAA, Schwartz P (1997) Bending fatigue of carbon fiber reinforced epoxy composite strands. Compos Sci Technol 57:229–235CrossRefGoogle Scholar
  2. 2.
    Joris D, Paepegam WV (2001) Fatigue damage modeling of fiber reinforced composite materials—review. Appl Mech Rev 54(4):279–300CrossRefGoogle Scholar
  3. 3.
    Shan Y, Liao K (2002) Environmental fatigue behavior and life prediction of unidirectional glass–carbon epoxy hybrid composites. Int J Fatigue 24:847–859Google Scholar
  4. 4.
    Liao K, Schultheisz CR, Hunston DL, Brinson LC (1998) Long-term durability of fiber-reinforced polymer–matrix composite materials for infrastructure applications: a review. SAMPE J Adv Mater 30(4):2–40Google Scholar
  5. 5.
    Khatri SC, Koczak MJ (1996) Thick-section AS4-graphite/E-glass/PPS hybrid composites: part I. Tensile behaviour. Compos Sci Technol 56:181–192CrossRefGoogle Scholar
  6. 6.
    Marom G, Harel H, Neumann S, Friedrich K, Schulte K, Wagner HD (1989) Fatigue behavior and rate dependent properties of aramid fibre/carbon fibre hybrid composite. Composites 20(6):537–544CrossRefGoogle Scholar
  7. 7.
    Fernando G, Dickson RF, Adam T, Reiter H, Harris B (1988) Fatigue behaviour of hybrid composites: part I. Carbon–kevlar hybrids. J Mater Sci 23:3732–3743CrossRefGoogle Scholar
  8. 8.
    Dickson RF, Fernando G, Adam T, Reiter H, Harris B (1989) Fatigue behaviour of hybrid composites: part II. Carbon–glass hybrids. J Mater Sci 24:227–233CrossRefGoogle Scholar
  9. 9.
    Belingardi G, Cavatorta MP, Frasca C (2006) Bending fatigue behavior of glass–carbon/epoxy hybrid composites. Compos Sci Technol 66:222–232CrossRefGoogle Scholar
  10. 10.
    Cho DH, Lee DG, Choi JH (1997) Manufacturing of one-piece automotive drive shafts with aluminum and composite materials. Compos Struct 38:2188–2201CrossRefGoogle Scholar
  11. 11.
    Ramkumar A, Gnanamoorthy R (2010) Effect of nanoclay addition on the displacement-controlled flexural fatigue behavior of a polymer. J Mater Sci 45(15):4180–4187CrossRefGoogle Scholar
  12. 12.
    Rajeesh KR, Gnanamoorthy R, Velmurugan R (2010) Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite. Mater Sci Eng A 527(12):2826–2830CrossRefGoogle Scholar
  13. 13.
    Timmaraju MV, Gnanamoorthy R, Kannan K (2011) Effect of environment on flexural fatigue behavior of polyamide 66/hectorite nanocomposites. Int J Fatigue 33(4):541–548CrossRefGoogle Scholar
  14. 14.
    Timmaraju MV, Gnanamoorthy R, Kannan K (2011) Influence of imbibed moisture and organoclay on tensile and indentation behavior of polyamide 66/hectoritenanocomposites. Compos B Eng 42(3):466–472CrossRefGoogle Scholar
  15. 15.
    Liang YL, Pearson RA (2010) The toughening mechanism in hybrid epoxy–silica– rubber nanocomposites (HESRNs). Polymer 51(21):4880–4890CrossRefGoogle Scholar
  16. 16.
    Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2009) The cyclic-fatigue behaviour of an epoxy polymer modified with micron-rubber and nanosilica particles. J Mater Sci 44(16):4487–4490CrossRefGoogle Scholar
  17. 17.
    Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2009) The effect of rubber microparticles and silica nano-particles on the tensile fatigue behaviour of a glass fibre epoxy. J Mater Sci 44(1):342–345CrossRefGoogle Scholar
  18. 18.
    Manjunatha CM, Jagannatha N, Padamalatha K, Taylor AC, Kinloch AJ (2012) The fatigue and fracture behavior of micron-rubber and nano-silica particles modified epoxy polymer. Int J Nanosci 11(3):1240002-1-7CrossRefGoogle Scholar
  19. 19.
    Manjunatha CM, Bojja R, Jagannathan N, Kinloch AJ (2013) Enhanced fatigue behavior of a glass fiber reinforced hybrid particles modified epoxy nanocomposite under WISPERX spectrum load sequence. Int J Fatigue 54:25–31CrossRefGoogle Scholar
  20. 20.
    Manjunatha CM, Sprenger S, Taylor AC, Kinloch AJ (2011) The tensile fatigue behavior of a glass-fiber reinforced plastic composite using a hybrid—toughened epoxy matrix. J Composite Mater 44(17):2095–2109CrossRefGoogle Scholar
  21. 21.
    Manjunatha CM, Jagannatha N, Padamalatha K, Taylor AC, Kinloch AJ (2011) The effect of micron-rubber and nano-silica particles on the fatigue crack growth behavior of an epoxy polymer. Int J Nanosci 10(4):1095–1099CrossRefGoogle Scholar
  22. 22.
    Al-Assaf Y, El Kadi H (2007) Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks. J Compos Struct 77(4):561–569CrossRefGoogle Scholar
  23. 23.
    Freire RCS Jr., Neto ADD, De Aquino EMF (2009) Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP. Int J Fatigue 31:831–839CrossRefGoogle Scholar
  24. 24.
    Freire RCS Jr., Neto ADD, de Aquino EMF (2005) Building of constant life diagrams of fatigue using artificial neural networks. Int J Fatigue 27:746–751CrossRefGoogle Scholar
  25. 25.
    Vassilopoulos AP, Georgopoulos EF, Dionysopoulos V (2007) Artificial neural networks in spectrum fatigue life prediction of composite materials. Int J Fatigue 29:20–29CrossRefGoogle Scholar
  26. 26.
    Vassilopoulos AP, Georgopoulos EF, Keller T (2008) Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials. Int J Fatigue 30:1634–1645CrossRefGoogle Scholar
  27. 27.
    Xiang K-L, Xiang P-Y, Wu Y-P (2014) Prediction of the fatigue life of natural rubber composites by artificial neural network approaches. Mater Des 57:180–185CrossRefGoogle Scholar
  28. 28.
    El Kadi H, Al-Asaf Y (2002) The prediction of the fatigue life of unidirectional glass fiber/epoxy composite laminea using different neural network paradigms. J Compos Struct 55:239–246CrossRefGoogle Scholar
  29. 29.
    El Kadi H, Al-Assaf Y (2002) Energy-based fatigue life prediction of fiberglass/epoxy composites using modular neural networks. J Compos Struct 57:85–89CrossRefGoogle Scholar
  30. 30.
    Bhat C, Bhat MR, Murthy CRL (2008) Characterization of failure modes in CFRP composites—an ANN approach. J Compos Mater 42(3):257–276CrossRefGoogle Scholar
  31. 31.
    ASTM Standard (D 3039M) Standard test method for tensile properties of polymer matrix composite materials, Barr Harbor Drive, West Conshohocken, PA, United StateGoogle Scholar
  32. 32.
    Osama Abdul Aziz Abdullah (2016) Effect of fiber pre-stress and curing temperature on the tensile and flexural properties of carbon fiber-epoxy composite. Ph.D. thesis, College of Engineering University of BasrahGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Abdul Kareem F. Hassan
    • 1
  • Luay Sadiq Mohammed
    • 2
  • Husam Jawad Abdulsamad
    • 2
  1. 1.Department of Mechanical Engineering, College of EngineeringUniversity of BasrahBasrahIraq
  2. 2.Department of Mechanical Engineering, College of EngineeringUniversity of KufaKufaIraq

Personalised recommendations