Predicting simulation of flow induced by IPMC oscillation in fluid environment

  • H. F. Pinto
  • A. G. B. da Cruz
  • S. Ranjbarzadeh
  • F. P. Duda
Technical Paper
  • 51 Downloads

Abstract

This work deals with numerical modeling of fluid-structure interactions of a strip-shaped IPMC actuation in an aqueous environment. We consider an electro-chemo-mechanical model to predict the behavior of a strip-shaped IPMC actuation. The flow is predicted using the Navier–Stokes equations. The model is implemented and solved using the finite-element software COMSOL Multiphysics. Numerical simulations of the hydrodynamics induced by the strip-shaped IPMC are carried out for the purpose of novel propulsive actuators that interact with vortex flows to absorb their energy and release it at appropriate phase. The simulation results might be used to determine the effectiveness and application of IPMCs for micro-propulsion mechanisms, IPMC cilia-like structures used for flow actuation and mixing applications.

Keywords

Ionic polymer–metal composites Flow Artificial muscles Finite-elements 

Notes

Acknowledgements

The authors gratefully acknowledge financial support by CNPq and CAPES.

References

  1. 1.
    Abdelnour K, Mancia E, Peterson SD, Porfiri M (2009) Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study. Smart Mater Struct 18(8):085006CrossRefGoogle Scholar
  2. 2.
    Aureli M, Kopman V, Porfiri M (2010) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans Mechatron 15(4):603–614CrossRefGoogle Scholar
  3. 3.
    Bandyopadhyay PR, Hansen JC (2013) Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control. Scientific reports 3Google Scholar
  4. 4.
    Carpi F (2010) Electromechanically active polymers. Polym Int 59(3):277–278CrossRefGoogle Scholar
  5. 5.
    Cen L, Erturk A (2013) Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspiration Biomim 8(1):016006CrossRefGoogle Scholar
  6. 6.
    Cha Y, Laut J, Phamduy P, Porfiri M (2016) Swimming robots have scaling laws, too. IEEE/ASME Trans Mechatron 21(1):598–600CrossRefGoogle Scholar
  7. 7.
    Chen Z, Shatara S, Tan X (2010) Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans Mechatron 15(3):448–459CrossRefGoogle Scholar
  8. 8.
    Den Toonder JMJ, Broer DJ, Van Dijken AR (2007) Actuator elements for microfluidics, responsive to multiple stimuli (2007). US Patent App. 12/278,417Google Scholar
  9. 9.
    Ern A, Guermond JL (2013) Theory and practice of finite elements, vol 159. Springer, BerlinMATHGoogle Scholar
  10. 10.
    Facci AL, Porfiri M (2013) Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids. J Fluids Struct 38:205–222CrossRefGoogle Scholar
  11. 11.
    Gazzola M, Argentina M, Mahadevan L (2014) Scaling macroscopic aquatic locomotion. Nat Phys 10(10):758–761CrossRefGoogle Scholar
  12. 12.
    Hubbard JJ, Fleming M, Palmre V, Pugal D, Kim KJ, Leang KK (2014) Monolithic ipmc fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J Ocean Eng 39(3):540–551CrossRefGoogle Scholar
  13. 13.
    Kim B, Kim DH, Jung J, Park JO (2005) A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater Struct 14(6):1579CrossRefGoogle Scholar
  14. 14.
    Lei H, Li W, Tan X (2012) Microfabrication of IPMC cilia for bio-inspired flow sensing. In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD 2012), vol. 8340. p 83401Google Scholar
  15. 15.
    Multiphysics C (2013) Comsol multiphysics reference manualGoogle Scholar
  16. 16.
    Nardinocchi P, Pezzulla M, Placidi L (2011) Thermodynamically based multiphysic modeling of ionic polymer metal composites. J Intell Mater Syst Struct 22:1887–1897CrossRefGoogle Scholar
  17. 17.
    Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 92(5):2899–2915CrossRefGoogle Scholar
  18. 18.
    Phamduy P, Vazquez MA, Kim C, Mwaffo V, Rizzo A, Porfiri M (2017) Design and characterization of a miniature free-swimming robotic fish based on multi-material 3d printing. Intl J Intell Robot Appl 1(2):209–223CrossRefGoogle Scholar
  19. 19.
    Phamduy P, Vazquez MA, Kim C, Mwaffo V, Rizzo A, Porfiri M (2017) Design and characterization of a miniature free-swimming robotic fish based on multi-material 3d printing. Intl J Intell Robot Appl 1:1–15.  https://doi.org/10.1007/s41315-017-0012-z CrossRefGoogle Scholar
  20. 20.
    Raj A, Thakur A (2016) Fish-inspired robots: design, sensing, actuation, and autonomy-a review of research. Bioinspiration Biomim 11(3):031001CrossRefGoogle Scholar
  21. 21.
    Shahinpoor M (2015) Ionic polymer metal composites (IMPCs): Smart multi–functional materials and artificial muscles, vol 2. Royal Society of ChemistryGoogle Scholar
  22. 22.
    Tsugawa MA, Palmre V, Carrico JD, Kim KJ, Leang KK (2015) Slender tube-shaped and square rod-shaped ipmc actuators with integrated sensing for soft mechatronics. Meccanica 50(11):2781–2795CrossRefGoogle Scholar
  23. 23.
    Vohnout S, Kim SM, Park IS, Banister M, Tiwari R, Kim KJ (2007) IPMC-assisted miniature disposable infusion pumps with embedded computer control. In: The 14th International symposium on: smart structures and materials and nondestructive evaluation and health monitoring. International Society for Optics and Photonics, pp 65241U–65241UGoogle Scholar
  24. 24.
    Wang J, McDaid AJ, Lu CZ, Aw KC (2017) A compact ionic polymer–metal composite (IPMC) actuated valveless pump for drug delivery. IEEE/ASME Trans Mechatron 22(1):196–205CrossRefGoogle Scholar
  25. 25.
    Chae W, Cha Y, Peterson SD, Porfiri M (2015) Flow measurement and thrust estimation of a vibrating ionic polymer metal composite. Smart Mater Struct 24:095018CrossRefGoogle Scholar
  26. 26.
    Yeom SW, Oh IK (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18(8):085002CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • H. F. Pinto
    • 1
  • A. G. B. da Cruz
    • 2
  • S. Ranjbarzadeh
    • 1
  • F. P. Duda
    • 1
    • 3
  1. 1.Department of Mechanical Engineering, PEM/COPPEFederal University of Rio de Janeiro, UFRJRio de JaneiroBrazil
  2. 2.Faculty of Mechanical Engineering, PPGEM/ITECFederal University of Pará, UFPABelémBrazil
  3. 3.Department of Nanotechnology Engineering Program, PENt/COPPEFederal University of Rio de Janeiro, UFRJRio de JaneiroBrazil

Personalised recommendations