Numerical investigation of hot ultrasonic assisted turning of aviation alloys

  • Mehmet Alper Sofuoğlu
  • Fatih Hayati Çakır
  • Selim Gürgen
  • Sezan Orak
  • Melih Cemal Kuşhan
Technical Paper
  • 156 Downloads

Abstract

Aviation alloys exhibit superior properties such as high-strength-to-weight ratio and corrosion resistance but these alloys possess poor machinability. To overcome this disadvantage, new machining methods (Ultrasonic assisted machining, hot machining, etc.) are developed. Hot ultrasonic assisted turning (HUAT) is a new hybrid machining method which changes the cutting system between tool and workpiece, therefore, reduced cutting forces and better surface finish for workpiece are obtained. In this study, 2D finite element (FE) analysis is carried out to investigate the effects of these machining methods on titanium and Hastelloy-X alloys in terms of cutting forces, cutting tool temperatures and effective stresses. DEFORM-2D software is used during analyses. In addition, an experimental study is conducted to verify numerical results. During verification, cutting tool temperature is taken into consideration. It is confirmed that HUAT technique reduces cutting forces and effective stress significantly but cutting temperature increases compared to conventional and ultrasonic assisted turning.

Keywords

Finite element modeling Hot ultrasonic assisted machining Titanium alloys Ultrasonic assisted machining Hot machining Hastelloy-X 

Notes

Acknowledgements

This work was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Project #215M382) and the Research Fund of Eskişehir Osmangazi University (ESOGU BAP Project #2016-1086). M.A.Sofuoğlu acknowledges the support of TÜBİTAK under program 2228.

References

  1. 1.
    Kukkala V (2012) Experimental study and optimization of the machining parameters in ultrasonic vibration assisted turning (UVT). Master Thesis, Department of Mechanical Engineering, National Institute of Technology, RourkelaGoogle Scholar
  2. 2.
    Palacios JA, Olvera D, Urbikain G, Elías-Zúñiga A, Martínez-Romero O, López de Lacalle LN, Rodríguez C, Martínez-Alfaro H (2018) Combination of simulated annealing and pseudo spectral methods for the optimum removal rate in turning operations of nickel-based alloys. Adv Eng Softw 115:391–397CrossRefGoogle Scholar
  3. 3.
    Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86(1–3):1–16CrossRefGoogle Scholar
  4. 4.
    Ahmed N, Mitrofanov AV, Babitsky VI, Silberschmidt VV (2007) Analysis of forces in ultrasonically assisted turning. J Sound Vib 308:845–854CrossRefGoogle Scholar
  5. 5.
    Celaya A, Lacelle LNL, Campa FJ, Lamikiz A (2010) Ultrasonic assisted turning of mild steels. Int J Mater Prod Technol 37(1/2):60–70CrossRefGoogle Scholar
  6. 6.
    Özler L, İnan A, Özel C (2001) Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int J Mach Tools Manuf 41(2):163–172 CrossRefGoogle Scholar
  7. 7.
    Lacelle LN, Sanchez JA, Lamikiz A, Celaya A (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng 126(2):274–285CrossRefGoogle Scholar
  8. 8.
    Lacelle LN, Lamikiz LN, Celeya A (2002) Simulation of plasma assisted milling of heat resistant alloys. Int J Simul Model 1(1):5–15Google Scholar
  9. 9.
    Muhammad R, Roy A, Silberschmidt VV (2013) Finite element modelling of conventional and hybrid oblique turning processes of titanium alloy. Procedia CIRP 8:510–515 CrossRefGoogle Scholar
  10. 10.
    Ahmed N, Mitrofanov AV, Babitsky VI, Silberschmidt VV (2006) Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Mater Sci Eng A 424(1–2):318–325CrossRefGoogle Scholar
  11. 11.
    Babitsky VI, Kalashnikov AN, Molodtsov FV (2004) Autoresonant control of ultrasonically assisted cutting. Mechatronics 14(1):91–114CrossRefGoogle Scholar
  12. 12.
    Maurotto A, Muhammad R, Roy, Silberschmidt VV (2010) Recent developments in ultrasonically assisted machining of advanced alloys”. In: 4th CIRP conference on high performance cutting. GifuGoogle Scholar
  13. 13.
    Maurotto A, Muhammad A, Roy R, Babitsky A, Silberschmidt V (2012) Comparing machinability of Ti-15-3-3-3 and Ni-625 alloys in UAT. Procedia CIRP 1:330–335CrossRefGoogle Scholar
  14. 14.
    Maurotto A, Muhammad R, Roy A, Silberschmidt VV (2013) Enhanced ultrasonically assisted turning of a β-titanium alloy. Ultrasonics 53(7):1242–1250CrossRefGoogle Scholar
  15. 15.
    Maurotto A, Roy A (2014) Surface-roughness improvement in ultrasonically assisted turning. Procedia CIRP 13:49–54CrossRefGoogle Scholar
  16. 16.
    Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172. CrossRefGoogle Scholar
  17. 17.
    Brehl DE, Dow TA, Garrard KP, Sohn A (2006) Microstructure fabrication using elliptical vibration-assisted machining. Proc ASPE 39:511–514Google Scholar
  18. 18.
    Shamoto E, Suzuki N, Tsuchiya E, Hori Y, Inagaki H, Yoshino K (2005) Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Ann Manuf Technol 54(1):321–324CrossRefGoogle Scholar
  19. 19.
    Khajehzadeh M, Akhlaghi M, Razfar MR (2014) Finite element simulation and experimental investigation of tool temperature during ultrasonically assisted turning of aerospace aluminum using multicoated carbide inserts. Int J Adv Manuf Technol 75(5–8):1163–1175CrossRefGoogle Scholar
  20. 20.
    Patil Sandip, Joshi S, Tewari A, Joshi SS (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54(2):694–705CrossRefGoogle Scholar
  21. 21.
    Tilghman BC 1889. Cutting metal by electricity. US416873 A. http://www.google.com.tr/patents/US416873. Accessed 15 Aug 2017
  22. 22.
    Armstrong ET, Cosler AS, Katz EF (1951) Machining of heated metals. ASME 35:73Google Scholar
  23. 23.
    Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials—A review. Int J Mach Tools Manuf 50(8):663–680CrossRefGoogle Scholar
  24. 24.
    Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration cutting. Int J Mach Tools Manuf 48(9):965–974CrossRefGoogle Scholar
  25. 25.
    Abotula S, Shukla A, Chona R (2011) Dynamic constitutive behavior of Hastelloy-X under thermo-mechanical loads. J Mater Sci 46(14):4971–4979CrossRefGoogle Scholar
  26. 26.
    Lee WS, Lin CF (1998) Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Mater Sci Eng A 241(1–2):48–59CrossRefGoogle Scholar
  27. 27.
    Çakır FH, Gürgen S, Sofuoğlu MA, Çelik ON, Kuşhan MC (2015) Finite element modeling of ultrasonic assisted turning of Ti6Al4V Alloy. Procedia Soc Behav Sci 195:2839–2848CrossRefGoogle Scholar
  28. 28.
    Prete AD, Filice L, Umbrello D (2013) Numerical simulation of machining nickel-based alloys. Procedia CIRP 8:540–545CrossRefGoogle Scholar
  29. 29.
    Özel T, Sima M, Srivastava AK (2010) Finite element simulation of high speed machining Ti-6Al-4V alloy using modified material models. Trans NAMRI/SME 38:49–56Google Scholar
  30. 30.
    Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann Manuf Technol 61(1):547–550CrossRefGoogle Scholar
  31. 31.
    Aghaie-Khafri, M and Golarzi, N (2008) Forming behavior and workability of Hastelloy X superalloy during hot deformation. Mat Sci Eng A 486 (1–2):641–647CrossRefGoogle Scholar
  32. 32.
    Abotula S, Heeder N, Chona R, Shukla A (2014) Dynamic thermo-mechanical response of Hastelloy-X to shock wave loading. Exp Mech 54(2):279–291 CrossRefGoogle Scholar
  33. 33.
    Zhou Ming, Eow YT, Ngoi BKA, Lim EN (2003) Vibration-assisted precision machining of steel with PCD tools. Mater Manuf Process 18(5):825–834 CrossRefGoogle Scholar
  34. 34.
    Mitrofanov AV, Ahmed N, Babitsky VI, Silberschmidt VV (2005) Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Process Technol 162–163:649–654CrossRefGoogle Scholar
  35. 35.
    Muhammad R, Maurotto A, Roy A, Silberschmidt VV (2013) Hot ultrasonically assisted turning of β-Ti alloy. Procedia CIRP 1:336–341CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Mehmet Alper Sofuoğlu
    • 1
  • Fatih Hayati Çakır
    • 2
  • Selim Gürgen
    • 2
  • Sezan Orak
    • 1
  • Melih Cemal Kuşhan
    • 1
  1. 1.Department of Mechanical EngineeringEskişehir Osmangazi UniversityEskişehirTurkey
  2. 2.Eskişehir Vocational SchoolEskişehir Osmangazi UniversityEskişehirTurkey

Personalised recommendations