Underwater radio frequency image sensor using progressive image compression and region of interest

  • Eduardo M. Rubino
  • Diego Centelles
  • Jorge Sales
  • José V. Martí
  • Raúl Marín
  • Pedro J. Sanz
  • Alberto J. Álvares
Technical Paper


The increasing demand for underwater robotic intervention systems around the world in several application domains requires more versatile and inexpensive systems. By using a wireless communication system, supervised semi-autonomous robots have freedom of movement; however, the limited and varying bandwidth of underwater radio frequency (RF) channels is a major obstacle for the operator to get camera feedback and supervise the intervention. This paper proposes the use of progressive (embedded) image compression and region of interest (ROI) for the design of an underwater image sensor to be installed in an autonomous underwater vehicle, specially when there are constraints on the available bandwidth, allowing a more agile data exchange between the vehicle and a human operator supervising the underwater intervention. The operator can dynamically decide the size, quality, frame rate, or resolution of the received images so that the available bandwidth is utilized to its fullest potential and with the required minimum latency. The paper focuses first on the description of the system, which uses a camera, an embedded Linux system, and an RF emitter installed in an OpenROV housing cylinder. The RF receiver is connected to a computer on the user side, which controls the camera monitoring parameters, including the compression inputs, such as region of interest (ROI), size of the image, and frame rate. The paper focuses on the compression subsystem and does not attempt to improve the communications physical media for better underwater RF links. Instead, it proposes a unified system that uses well-integrated modules (compression and transmission) to provide the scientific community with a higher-level protocol for image compression and transmission in sub-sea robotic interventions.


Progressive image compression Region of interest (ROI) Wavelet transforms Low-bandwidth communications Underwater vehicles for intervention 



This work was partly supported by the Spanish Ministry under the Grant DPI2014-57746-C3 (MERBOTS Project), by Universitat Jaume I Grants PID2010-12, E-2015-24, PREDOC/2012/47 and PREDOC/2013/46, and by Generalitat Valenciana Grant ACIF/2014/298 and in the Brazil CNPQ and FAP/DF.


  1. 1.
    Adams M, Kossentini F (2000) Jasper: a software-based JPEG-2000 codec implementation. In: Image processing, 2000. In: Proceedings of 2000 international conference on, vol 2, pp 53–56Google Scholar
  2. 2.
    Calderbank A, Daubechies I, Sweldens W, Yeo BL (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5(3):332–369. doi: 10.1006/acha.1997.0238.
  3. 3.
    Delaunay X, Thiebaut C, Chabert M, Charvillat V, Morin G (2010)Progressive coding of satellite images with regions of interest. In: On-board payload data compression workshop. Toulouse, FranceGoogle Scholar
  4. 4.
    Eastwood R, Freitag L, Catipovic J (2002) Compression techniques for improving underwater acoustic transmission of images and data. In: OCEANS ’96. MTS/IEEE, IEEE Xplore, pp 63–68Google Scholar
  5. 5.
    Eastwood RL, Freitag, LE, Catipovic JA (1996) Compression techniques for improving underwater acoustic transmission of images and data. In: OCEANS 96 MTS/IEEE conference proceedings. The coastal ocean—prospects for the 21st century, p 67 suppl. doi: 10.1109/OCEANS.1996.566719
  6. 6.
    Esmaiel HAH (2015) Advanced multi-band modulation technology for underwater communication systems. University of Tasmania, Doctoral ThesisGoogle Scholar
  7. 7.
    Farr N, Bowen A, Ware J, Pontbriand C, Tivey M (2010) An integrated, underwater optical/acoustic communications system. In: OCEANS 2010 IEEE—Sydney, pp 1–6. doi: 10.1109/OCEANSSYD.2010.5603510
  8. 8.
    Gomes J, Barroso V, Ayela G, Coince P (2000) An overview of the asimov acoustic communication system. In: OCEANS 2000 MTS/IEEE conference and exhibition. Conference proceedings (Cat. no. 00CH37158), vol 3, pp 1633–1637. doi: 10.1109/OCEANS.2000.882174
  9. 9.
    Hamada Esmaiel DJ (2014) Optimum bit rate for image transmission over underwater acoustic channel. J Electr Electron Eng 2(4):64–74. doi: 10.11648/j.jeee.20140204.12 CrossRefGoogle Scholar
  10. 10.
    Hoag DF, Ingle VK, Gaudette RJ (1997) Low-bit-rate coding of underwater video using wavelet-based compression algorithms. IEEE J Ocean Eng 22(2):393–400. doi: 10.1109/48.585958 CrossRefGoogle Scholar
  11. 11.
    Hong E, Ladner R (2002) Group testing for image compression. Image Process IEEE Trans 11(8):901–911. doi: 10.1109/TIP.2002.801124 CrossRefGoogle Scholar
  12. 12.
    Kaeli JW (2013) Computational strategies for understanding underwater optical image datasets. In: Thesis, Massachusetts Institute of Technology, p 135Google Scholar
  13. 13.
    Mallat S (2009) A wavelet tour of signal processing. The sparse way, third edition. Elsevier, Oxford, p 805Google Scholar
  14. 14.
    Mohammed US, Hamada HA (2013) An efficient rate allocation scheme with optimum peak-to-average power ratio for transmission of image streams over OFDM channels. Int J Video Secur 10(10):30–42Google Scholar
  15. 15.
    Moinuddin A, Khan E(2006) Wavelet based embedded image coding using unified zero-block-zero-tree approach. In: Acoustics, speech and signal processing, 2006. ICASSP 2006 proceedings. 2006 IEEE international conference on, pp II–II. doi: 10.1109/ICASSP.2006.1660377
  16. 16.
    Murphy CA (2004) Progressively communicating rich telemetry from autonomous underwater vehicles via relays. In: Thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, p 75Google Scholar
  17. 17.
    Negahdaripour S, Khamene A (2000)Motion-based compression of underwater video imagery for the operations of unmanned submersible vehicles. Comput Vis Image Underst 79(1):162 – 183. doi: 10.1006/cviu.2000.0845.
  18. 18.
    Pearlman W, Islam A, Nagaraj N, Said A (2004) Efficient, low-complexity image coding with a set-partitioning embedded block coder. Circ Syst Video Technol IEEE Trans 14(11):1219–1235. doi: 10.1109/TCSVT.2004.835150 CrossRefGoogle Scholar
  19. 19.
    Pelekanakis C, Stojanovic M, Freitag L: High rate acoustic link for underwater video transmission. In: OCEANS 2003. Proceedings, vol 2, pp 1091–1097, vol 2. doi: 10.1109/OCEANS.2003.178494
  20. 20.
    Pelekanakis K (2004) Design and analysis of a high-rate acoustic link for underwater video transmission. In: Thesis, Massachusetts Institute of Technology, p 75Google Scholar
  21. 21.
    Pennebaker WB, Mitchell JL (1992) JPEG still image data compression standard. Van Nostrand Reinhold, New YorkGoogle Scholar
  22. 22.
    Prats M, del Pobil AP, Sanz PJ (2013) Robot physical interaction through the combination of vision, tactile and force feedback. Applications to assistive robotics. Springer Tracts in Advanced Robotics, vol 84. Springer Publishing Company, IncorporatedGoogle Scholar
  23. 23.
    Rehna VJ, Kumar MKJ (2012) Wavelet based image coding schemes: a recent survey. CoRR. arxiv:
  24. 24.
    Ribas J, Sura D, Stojanovic M (2010) Underwater wireless video transmission for supervisory control and inspection using acoustic OFDM. OCEANS 2010:1–9. doi: 10.1109/OCEANS.2010.5663839 Google Scholar
  25. 25.
    Rubino EM, Sales J, Centelles D, Sanz PJ, Marín R, Marti JV (2015) Image compression with Region Of Interest for Underwater Robotic Archaeological Applications. In: XXXVI Jornadas de Automática. Bilbao, SpainGoogle Scholar
  26. 26.
    Said A, Pearlman W (1996) A new, fast, and efficient image codec based on set partitioning in hierarchical trees. Circ Syst Video Technol IEEE Trans 6(3):243–250. doi: 10.1109/76.499834 CrossRefGoogle Scholar
  27. 27.
    Santoso TB, Wirawan, Hendrantoro G (2012) Image transmission with ofdm technique in underwater acoustic environment. In: 2012 7th international conference on telecommunication systems, services, and applications (TSSA), pp 37–41. doi: 10.1109/TSSA.2012.6366017
  28. 28.
    Sanz PJ, Peñalver A, Sales J, Fernández JJ, Perez J, Fornas D, García J, Marin R (2015) Multipurpose underwater manipulation for archaeological intervention. In: Sixth international workshop on marine technology (MARTECH’15). Cartagena, SpainGoogle Scholar
  29. 29.
    Sanz PJ, Peñalver A, Sales J, Fornas D, Fernández JJ, Perez J, Bernabé JA (2013) GRASPER: a multisensory based manipulation system for underwater operations. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, Manchester, UKGoogle Scholar
  30. 30.
    Sanz PJ, Prats M, Ridao P, Ribas D, Oliver G, Orti A (2010) Recent progress in the RAUVI project. A reconfigurable autonomous underwater vehicle for intervention. In: 52th international symposium ELMAR-2010, pp 471–474. Zadar, CroatiaGoogle Scholar
  31. 31.
    Sanz PJ, Ridao P, Oliver G, Casalino G, Petillot Y, Silvestre C, Melchiorri C, Turetta A (2013) TRIDENT: an European project targeted to increase the autonomy levels for underwater intervention missions. In: OCEANSG’13 MTS/IEEE conference, pp 1–10. San Diego, CAGoogle Scholar
  32. 32.
    Senapati RK, Pati UC, Mahapatra KK (2012) Listless block-tree set partitioning algorithm for very low bit rate embedded image compression. AEU Int J Electron Commun 66(12):985–995. doi: 10.1016/j.aeue.2012.05.001.
  33. 33.
    Shapiro J (1993) Embedded image coding using zerotrees of wavelet coefficients. Signal Process IEEE Trans 41(12):3445–3462. doi: 10.1109/78.258085 CrossRefzbMATHGoogle Scholar
  34. 34.
    Shaw A, Al-Shamma’a A, Wylie S, Toal D (2006) Experimental investigations of electromagnetic wave propagation in seawater. In: Microwave conference, 2006. 36th European, pp 572–575Google Scholar
  35. 35.
    Siegel M, King RWP (1973) Electromagnetic propagation between antennas submerged in the ocean. Antennas Propag IEEE Trans 21(4):507–513. doi: 10.1109/TAP.1973.1140525 CrossRefGoogle Scholar
  36. 36.
    Stojanovic M, Preisig J (2009) Underwater acoustic communication channels: propagation models and statistical characterization. Commun Mag IEEE 47(1):84–89. doi: 10.1109/MCOM.2009.4752682 CrossRefGoogle Scholar
  37. 37.
    Subedar M, Karam L, Abousleman G (2004) An embedded scaling-based arbitrary shape region-of-interest coding method for JPEG2000. In: Acoustics, speech, and signal processing, 2004. In: Proceedings (ICASSP ’04). IEEE international conference on, vol 3, pp iii–681–4. doi: 10.1109/ICASSP.2004.1326636
  38. 38.
    Sun Y, Li RM, Cao XL (2005) Image compression method of terrain based on antonini wavelet transform. In: Proceedings of 2005 IEEE international geoscience and remote sensing symposium, 2005. IGARSS ’05, vol 2, pp 4. doi: 10.1109/IGARSS.2005.1525200
  39. 39.
    Suzuki M, Sasaki T (1992) Digital acoustic image transmission system for deep sea research submersible. In: Proceedings of IEEE Oceans’92 conference, pp 567–570. doi: 10.1109/DCC.2016.19
  40. 40.
    Taubman D, Ordentlich E, Weinberger M, Seroussi G (2002) Embedded block coding in JPEG 2000. Sig Process Image Commun 17(1):49–72CrossRefGoogle Scholar
  41. 41.
    Taubman DS, Marcellin MW (2001) JPEG 2000: image compression fundamentals, standards and practice. Kluwer Academic Publishers, NorwellGoogle Scholar
  42. 42.
    Tomasi B, Toni L, Casari P, Preisig J, Zorzi M (2011) A study on the spiht image coding technique for underwater acoustic communications. In: Proceedings of the sixth ACM international workshop on underwater networks, WUWNet ’11, pp 9:1–9:8. ACM, New York, NY, USA.  10.1145/2076569.2076578
  43. 43.
    Usevitch B (1996) Optimal bit allocation for biorthogonal wavelet coding. In: Data compression conference, 1996. DCC ’96. Proceedings, pp 387–395. doi: 10.1109/DCC.1996.488344
  44. 44.
    Walker JS, Nguyen TQ, Chen YJ (2003) A low-power, low-memory system for wavelet-based image compression. Opt Eng Res Signposts 5:111–125Google Scholar
  45. 45.
    Wheeler FW, Pearlman W (2000) Combined spatial and subband block coding of images. In: Image processing, 2000. In: Proceedings of 2000 international conference on, vol 3, pp 861–864. doi: 10.1109/ICIP.2000.899592
  46. 46.
    Xiong Z, Guleryuz O, Orchard M (1996) A DCT-based embedded image coder. Signal Process Lett IEEE 3(11):289–290. doi: 10.1109/97.542157 CrossRefGoogle Scholar
  47. 47.
    Zhang H, Meng F (2012) Exploiting the skin effect using radio frequency communication in underwater communication. In: Industrial control and electronics engineering (ICICEE), 2012 international conference on, pp 1150–1153. doi: 10.1109/ICICEE.2012.305
  48. 48.
    Zhang Y, Negahdaripour S, Li Q (2016) Low bit-rate compression of underwater imagery based on adaptive hybrid wavelets and directional filter banks. Signal Process Image Commun 47:96–114. doi: 10.1016/j.image.2016.06.001.
  49. 49.
    Zheng H, Wang N, Wu J (2017) Minimizing deep sea data collection delay with autonomous underwater vehicles. Parallel Distrib Comput:1–43Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2017

Authors and Affiliations

  • Eduardo M. Rubino
    • 1
  • Diego Centelles
    • 1
  • Jorge Sales
    • 1
  • José V. Martí
    • 1
  • Raúl Marín
    • 1
  • Pedro J. Sanz
    • 1
  • Alberto J. Álvares
    • 2
  1. 1.Computer Science and Engineering DepartmentUniversity of Jaume-ICastelló de la PlanaSpain
  2. 2.Department of Mechanical EngineeringUniversity of BrasiliaBrasiliaBrazil

Personalised recommendations