Advertisement

Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology

  • M. R. Stalin JohnEmail author
  • Nilanjan Banerjee
  • Karuna Shrivastava
  • B. K. Vinayagam
Technical Paper

Abstract

The roller burnishing tool is used in computer numerical control lathe to superfinish the turning process. The tool and workpiece materials considered are tungsten carbide (69 HRC) and EN-9 Grade Alloy Steel (10 HRC), respectively. The input parameters are burnishing force, feed, roller contact width and number of passes. The response surface methodology is used to develop a mathematical model and optimize the parameters for the surface characteristics (such as surface roughness and surface hardness). The optimum surface roughness and its surface hardness are 0.2 µm and 18 HRC, respectively. The surface roughness is reduced by 94.5% and hardness is improved by 41.7%. The contributing variable of each parameter is estimated using analysis of variance method. The morphology of the burnished surface is investigated using scanning electron microscope.

Keywords

Roller burnishing Response surface methodology Optimization technique CNC lathe ANOVA analysis 

References

  1. 1.
    Akkurt A (2010) Comparison of roller burnishing method with other hole surface finishing processes applied on AISI 304 Austenitic Stainless Steel. J Mater Eng Perform, 1059–9495Google Scholar
  2. 2.
    Al Qawabeha UF, Al Qawabah SM (2013) Effect of roller burnishing on pure aluminum alloyed by copper. Ind Lubr Tribol 65(2):71–77CrossRefGoogle Scholar
  3. 3.
    Al Quran FMF (2015) The effect of roller burnishing on surface hardness and roughness of aluminum alloy. Int J Mech Appl 5(2):37–40Google Scholar
  4. 4.
    El-Axir MH (2000) An investigation into roller burnishing. Int J Mach Tools Manuf 40:1603–1617CrossRefGoogle Scholar
  5. 5.
    El-Khabeery MM, El-Axir MH (2001) Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity. Int J Mach Tools Manuf 41:1705–1719CrossRefGoogle Scholar
  6. 6.
    El-Tayeb NSM, Low KO, Brevern PV (2007) Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061. J Mater Process Technol 186:272–278CrossRefGoogle Scholar
  7. 7.
    El-Taweel TA, Ebeid SJ (2008) Effect of hybrid electrochemical smoothing—roller burnishing process parameters on roundness error and micro-hardness. Int J Adv Manuf Technol. doi: 10.1007/s00170-008-1632-0 Google Scholar
  8. 8.
    Hamadache H, Laouar L, Zeghib NE, Chaoui K (2006) Characteristics of Rb40 steel superficial layer under ball and roller burnishing. J Mater Process Technol 180:130–136CrossRefGoogle Scholar
  9. 9.
    Hassan AM, Al-Jalil HF, Ebied AA (1998) Burnishing force and number of ball passes for the optimum surface finish of brass components. J Mater Process Technol 83:176–179CrossRefGoogle Scholar
  10. 10.
    Kamble PS, Jadhav VS (2012) Experimental study of roller burnishing process on plain carrier of planetary type gear box. Int J Modern Eng Res 2(5):3379–3383Google Scholar
  11. 11.
    Klocke F, Liermann J (1998) Roller burnishing of hard turned surfaces. Int J Mach Tools Manuf 38(5–6):419–423CrossRefGoogle Scholar
  12. 12.
    Kumar N, Sachdeva A, Singh LP, Tripathi H (2016) Experimental investigation of effect of roller burnishing process parameters on surface roughness and surface hardness of C40E steel. Int J Mach Mach Mater 18(1–2):185–199Google Scholar
  13. 13.
    Némat M, Lyons AC (2000) An investigation of the surface topography of ball burnished mild steel and aluminium. Int J Adv Manuf Technol 16:469–473CrossRefGoogle Scholar
  14. 14.
    Okada M, Suenobu S, Watanabe K, Yamashita Y, Asakawa N (2015) Development and burnishing characteristics of roller burnishing method with rolling and sliding effects. Mechatronics 29:110–118CrossRefGoogle Scholar
  15. 15.
    Paiva AP, Ferreira JR, Balestrassi PP (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. J Mater Process Technol 189:26–35CrossRefGoogle Scholar
  16. 16.
    Qureshi NM, Patil Vaibhav B, Teli Basavaraj D, Mohite Radhika S, Patil Sonal S (2015) Analysis of effect of ball and roller burnishing processes on surface roughness on EN8 steel. Int J Eng Res Technol 4(6):311–315CrossRefGoogle Scholar
  17. 17.
    Rafati E, Mahdieh MS (2013) Investigation of variance of roller burnishing parameters on surface quality by Taguchi approach. Int J Adv Design Manuf Technol 6(3):77–81Google Scholar
  18. 18.
    Shankar E, Stalin John MR, Thirumurugan M (2008) Surface characteristics of Al-(SiC)p metal matrix composites by roller burnishing process. Int J Mach Mach Mater 3(3/4):283–292Google Scholar
  19. 19.
    Stalin John MR, Vinayagam BK (2011) Investigation of roller burnishing process on aluminum 63400 material. Aust J Mech Eng 8(1):47–54Google Scholar
  20. 20.
    Stalin John MR, Vinayagam BK (2011) An investigation of roller burnishing process on tool steel material using CNC lathe. Int J Mach Mach Mater 10(1-2):86–98Google Scholar
  21. 21.
    Yeldose BC, Ramamoorthy B (2008) An investigation into the high performance of TiN-coated rollers in burnishing process. J Mater Process Technol 20(7):350–355CrossRefGoogle Scholar
  22. 22.
    Yen Y-C (2004) Modelling of metal cutting and ball burnishing—prediction of tool wear and surface properties, Ph.D. Thesis. The Ohio State UniversityGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2016

Authors and Affiliations

  • M. R. Stalin John
    • 1
    Email author
  • Nilanjan Banerjee
    • 1
  • Karuna Shrivastava
    • 1
  • B. K. Vinayagam
    • 1
  1. 1.SRM UniversityKanchipuram DistrictIndia

Personalised recommendations