An overview of 0–1 test for chaos

  • Davide Bernardini
  • Grzegorz Litak
Technical Paper


0–1 test for chaos provides a simple method that can be used to detect the occurrence of non-regular stationary responses of dynamical systems of any sort. Besides the simplicity of its implementation, the mathematical background of the method is based on the analysis of the long-term behavior of the extension of the underlying dynamical system with respect to the two-dimensional Euclidean group, a notion that is likely to be not very familiar to most users of the method. It is perhaps for this reason that, while in the recent years the test is gaining increasing popularity, comparatively less attention has been devoted to the discussion of its motivations. The purpose of this paper is twofold: on one hand to discuss the mathematical background of the method and, on the other, to provide an overview of the main applications of 0–1 test.


Chaos Dynamical systems 


  1. 1.
    Gottwald G, Melbourne I (2004) A new test for chaos in deterministic systems. Proc R Soc Lond A 460:603–611MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gottwald G, Melbourne I (2005) Testing for chaos in deterministic systems with noise. Phys D 212:100–110MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young L-S (eds) Dynamical systems and turbulence dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer, BerlinGoogle Scholar
  4. 4.
    Wolf A, Swift J, Swinney H, Vastano J (1985) Determining Lyapunov exponents from a time series. Phys D 16:285–317MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kantz H, Schreiber T (1997) Non-linear time series analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar
  6. 6.
    Pikovsky A, Zaks M, Feudel U, Kurths J (1995) Singular continuous spectra in dissipative dynamics. Phys Rev E 52:285–296MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yalcinkaya T, Lai Y-C (1997) Bifurcation to strange nonchaotic attractors. Phys Rev E 56:1623–1630MathSciNetCrossRefGoogle Scholar
  8. 8.
    Litak G, Syta A, Wiercigroch M (2009) Identification of chaos in a cutting process by the 0–1 test. Chaos Solitons Fractals 40:2095–2101CrossRefGoogle Scholar
  9. 9.
    Litak G, Schubert S, Radons G (2012) Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn 69:1255–1262MathSciNetCrossRefGoogle Scholar
  10. 10.
    Krese B, Govekar E (2012) Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos. Nonlinear Dyn 67:2101–2109CrossRefGoogle Scholar
  11. 11.
    Bernardini D, Rega G, Litak G, Syta A (2013) Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test. Proc IMechE Part K J Multibody Dyn 227:17–22Google Scholar
  12. 12.
    Litak G, Bernardini D, Syta A, Rega G, Rysak A (2013) Analysis of chaotic non-isothermal solutions of thermomechanical shape memory oscillators. Eur Phys J Spec Top 222:1637–1647CrossRefGoogle Scholar
  13. 13.
    Cao J, Syta A, Litak G, Zhou S, Inman D, Chen Y (2015) Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur Phys J Plus 130:103CrossRefGoogle Scholar
  14. 14.
    Syta A, Bowen C, Kim H, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates meccanica. Meccanica 50:1961–1970CrossRefGoogle Scholar
  15. 15.
    Litak G, Friswell M, Adhikari S (2015) Regular and chaotic vibration in a piezoelectric energy harvester, Meccanica (accepted)Google Scholar
  16. 16.
    Gottwald G, Melbourne I (2009) On the implementation of the 0–1 test for chaos. SIAM J Appl Dyn Syst 8:129–145MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gottwald IMGA (2009) On the validity of the 0–1 test for chaos. Nonlinearity 22:1367–1382MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nicol M, Melbourne I, Ashwin P (2001) Euclidean extensions of dynamical systems. Nonlinearity 14:275–300MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gottwald GA, Melbourne I (2008) Comment on “reliability of the 0–1 test for chaos”. Phys Rev E 77:28201–28202CrossRefGoogle Scholar
  20. 20.
    Hu J, Tung W, Gao J, Cao Y (2005) Reliability of the 0–1 test for chaos. Phys Rev E 72:056207CrossRefGoogle Scholar
  21. 21.
    Romero-Bastida M, Olivares-Robles M, Braun E (2009) Probing hamiltonian dynamics by means of the 0–1. J Phys A 42:495102MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kulp C, Smith S (2011) Characterization of noisy symbolic time series. Phys Rev E 83:026201CrossRefGoogle Scholar
  23. 23.
    Kim Y (2014) A numerical study of the local k spectrum of strange nonchaotic attractors. J Korean Phys Soc 64:6–10CrossRefGoogle Scholar
  24. 24.
    Falconer I, Gottwald G, Melbourne I, Wormnes K (2007) Application of the 0–1 test for chaos to experimental data. SIAM J Appl Dyn Syst 6:395–402MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fouda J, Bodo B, Sabat S, Effa J (2014) A modified 0–1 test for chaos detection in oversampled time series observations. Int J Bifurc Chaos 24:1450063MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gottwald G, Melbourne I (2014) A test for a conjecture on the nature of attractors for smooth dynamical systems. Chaos 24:024403MathSciNetCrossRefGoogle Scholar
  27. 27.
    Litak G, Syta A, Budhraja M, Saha L (2009) Detection of the chaotic behaviour of a bouncing ball by the 0–1 test. Chaos Solitons Fractals 42:1511–1517CrossRefGoogle Scholar
  28. 28.
    Litak G, Sawicki J (2013) Regular and chaotic vibrations in the rub impact model of a jeffcott rotor with a fractional restore force. Eur Phys J Appl Phys 64:31303CrossRefGoogle Scholar
  29. 29.
    Piccirillo V, Balthazar J, Tusset A (2015) Chaos control and impact suppression in rotor-bearing system using magnetorheological fluid. Eur Phys J Spec Top (in press)Google Scholar
  30. 30.
    Fang H (2012) Synchronization of two rank-one chaotic systems without and with delay via linear delayed feedback control. J Appl Math 2012:325131MathSciNetzbMATHGoogle Scholar
  31. 31.
    Radons G, Zienert A (2013) Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field. Eur Phys J Spec Top 222:1675–1684CrossRefGoogle Scholar
  32. 32.
    Piccirillo V, Balthazar J, Tusset A, Bernardini D, Rega G (2015) Non-linear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. Int J NonLinear Mech. doi: 10.1016/j.ijnonlinmec.2015.06.013
  33. 33.
    Piccirillo V, Balthazar J, Tusset A, Bernardini D, Rega G (2015) Characterizing the nonlinear behavior of a pseudoelastic oscillator via the wavelet transform. Proc Inst Mech Eng Part C J Mech Eng Sci. doi: 10.1177/0954406215589842
  34. 34.
    Cafagna D, Grassi G (2008) Fractional-order chua’s circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos. Int J Bifurc Chaos 18:615–639MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Cafagna D, Grassi G (2008) Bifurcation and chaos in the fractional-order chen system via a time-domain approach. Int J Bifurc Chaos 18:1845–1863MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Cafagna D, Grassi G (2009) Fractional-order chaos: a novel four-wing attractor in coupled lorenz systems. Int J Bifurc Chaos 19:3329–3338CrossRefzbMATHGoogle Scholar
  37. 37.
    Cafagna D, Grassi G (2010) An effective method for detecting chaos in fractional-order systems. Int J Bifurc Chaos 20:669–678CrossRefzbMATHGoogle Scholar
  38. 38.
    Cafagna D, Grassi G (2012) On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn 70:1185–1197MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sun K, Liu X, Zhu C (2010) The 0–1 test algorithm for chaos and its applications. Chin Phys B 19:110510CrossRefGoogle Scholar
  40. 40.
    Syta A, Litak G, Lenci S, Scheffler M (2014) Chaotic vibrations of the duffing system with fractional damping. Chaos 24:013107MathSciNetCrossRefGoogle Scholar
  41. 41.
    Syta A, Litak G (2014) Dynamical response of a van der PolDuffing system with an external harmonic excitation and fractional derivative, vol 93. Springer, BerlinzbMATHGoogle Scholar
  42. 42.
    Xu J, Wang H, Fang H (2011) Characterization of periodic, quasiperiodic and chaotic states in nonpremixed biodiesel/air jet flames. Math Probl Eng 2011:861436CrossRefGoogle Scholar
  43. 43.
    Diddens C, Linz S (2013) Continuum modeling of particle redeposition during ion-beam erosion. Eur Phys J B 86:397MathSciNetCrossRefGoogle Scholar
  44. 44.
    Bizjan B, Sirik B, Govekar E (2015) Nonlinear analysis of mineral wool fiberization process. J Comput Nonlinear Dyn 10:021005CrossRefGoogle Scholar
  45. 45.
    Nair V, Thampi G, Karuppusamy S, Gopalan S, Sujith R (2013) Loss of chaos in combustion noise as a precursor of impending combustion instability. Int J Spray Combust Dyn 5:273–290CrossRefGoogle Scholar
  46. 46.
    Nair V, Sujith R (2015) A reduced-order model for the onset of combustion instability: physical mechanisms for intermittency and precursors. Proc Combust Inst 35:3193–3200CrossRefGoogle Scholar
  47. 47.
    Xin B, Wu Z (2015) Neimarksacker bifurcation analysis and 01 chaos test of an interactions model between industrial production and environmental quality in a closed area. Sustainability 7:10191–10209CrossRefGoogle Scholar
  48. 48.
    Krese B, Govekar E (2013) Analysis of traffic dynamics on a ring road-based transportation network by means of 0–1 test for chaos and Lyapunov spectrum. Transp Res C Emerg Technol 36:27–34CrossRefGoogle Scholar
  49. 49.
    Erzgraber H, Wieczorek S, Krauskopf B (2010) Dynamics of two semiconductor lasers coupled by a passive resonator. Phys Rev E 81:056201MathSciNetCrossRefGoogle Scholar
  50. 50.
    Yang QG, Yuan LG (2011) A proof for the existence of chaos in diffusively coupled map lattices with open boundary conditions. Discret Dyn Nat Soc 174376:16Google Scholar
  51. 51.
    Romero-Bastida M, Reyes-Martinez A (2011) Efficient time-series detection of the strong stochasticity threshold in fermi–pasta–ulam oscillator lattices. Phys Rev E 83:016213CrossRefGoogle Scholar
  52. 52.
    Zhou Z, Shi Y, Liu C, Wang G, Yang H (2012) Study on the dynamics of an inelastic bouncing ball. Acta Phys Sin 61:200501Google Scholar
  53. 53.
    Chowdhury D, Iyengar A, Lahiri S (2012) Gottwald melborune (0–1) test for chaos in a plasma. Nonlinear Process Geophys 19:53–56CrossRefGoogle Scholar
  54. 54.
    Zachilas L, Psarianos I (2012) Examining the chaotic behavior in dynamical systems by means of the 0–1 test. J Appl Math 2012:681296MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Devi S, Singh S, Sharma A (2013) Deterministic dynamics of the magnetosphere: results of the 01 test. Nonlinear Process Geophys 20:11–18CrossRefGoogle Scholar
  56. 56.
    Khondekar M, Ghosh D, Ghosh K, Bhattacharya A (2012) Nonlinearity and chaos in b-8 solar neutrino flux signals from sudbury neutrino observatory. Fractals 20:17–32CrossRefGoogle Scholar
  57. 57.
    Khondekar M, Ghosh D, Ghosh K, Bhattacharjee A (2015) Complexity in solar irradiance from the earth radiation budget satellite. IEEE Syst J 9:487–494CrossRefGoogle Scholar
  58. 58.
    Webel K (2012) Chaos in german stock returns. new evidence from the 0–1 test. Econ Lett 115:487–489CrossRefGoogle Scholar
  59. 59.
    Dafilis M, Frascoli F, McVernon J, Heffernan J, McCaw J (2014) The dynamical consequences of seasonal forcing, immune boosting and demographic change in a model of disease transmission. J Theor Biol 361:124132CrossRefzbMATHGoogle Scholar
  60. 60.
    Dafilis M, Frascoli F, McVernon J, Heffernan J, McCaw J (2014) Dynamical crises, multistability and the influence of the duration of immunity in a seasonally-forced model of disease transmission. Theor Biol Med Model 11:43CrossRefzbMATHGoogle Scholar
  61. 61.
    Florin L (2014) Design and evaluation of a multiagent interaction protocol generating behaviours with different levels of complexity. Neurocomputing 146:173–186CrossRefGoogle Scholar
  62. 62.
    Kedra M (2014) Deterministic chaotic dynamics of raba river flow (polish carpathian mountains). J Hydrol 509:474–503CrossRefGoogle Scholar
  63. 63.
    Kenitz K, Williams R, Sharples J, Selsil O (2013) The paradox of the plankton: species competition and nutrient feedback sustain phytoplankton diversity. Mar Ecol Prog Ser 490:107–119CrossRefGoogle Scholar
  64. 64.
    Syta A, Litak G (2008) Stochastic description of the deterministic rickers population model. Chaos Solitons Fractals 37:262–268MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Kim Y (2010) Identification of dynamical states in stimulated izhikevich neuron models by using a 0–1 test. J Korean Phys Soc 57:1363–1368CrossRefGoogle Scholar
  66. 66.
    McLennan-Smith T, Mercer G (2014) Complex behaviour in a dengue model with a seasonally varying vector population. Math Biosci 248:22–30MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Lawvere FW, Schanuel S (2009) iversity Press, Cambridge, UKCrossRefzbMATHGoogle Scholar
  68. 68.
    Polderman JW, Willems JC (1997) Introduction to the mathematical systems theory. A behavioral approach. Springer, Berlin, GermanyzbMATHGoogle Scholar
  69. 69.
    Fraser A, Swinney H (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Piccardi C, Rinaldi S (2002) Control of complex peak-to-peak dynamics. Int J Bifurc Chaos 12:2927–2936MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Yang Y, Ren X, Qin W (2008) Two novel methods for vibration diagnosis to characterize non-linear response. Nonlinear Anal. 68:582–590MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2015

Authors and Affiliations

  1. 1.Department of Structural and Geotechnical EngineeringUniversity of Rome SapienzaRomeItaly
  2. 2.Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland
  3. 3.Department of Process ControlAGH University of Science and TechnologyCracowPoland

Personalised recommendations