Analysis of syngas formation and ecological efficiency for the system of treating biomass waste and other solid fuels with CO2 recuperation based on integrated gasification combined cycle with diesel engine

  • A. Y. Pilatau
  • H. A. Viarshyna
  • A. V. Gorbunov
  • O. S. Nozhenko
  • H. S. Maciel
  • V. Y. Baranov
  • O. V. Mucha
  • R. Maurao
  • P. T. Lacava
  • I. Liapeshko
  • G. Petraconi Filho
  • A. Matus
Technical Paper

Abstract

This paper presents the analysis of ecological and economical availability for using syngas from gasification of biomass waste or other solid fuels into diesel with ICE-based combined cycle (CC). The new approach is proposed to improve the ecological efficiency of the CC system and decrease the cost of electricity which can be produced with electric generator. For optimization of design of the combined system the new diagrams were obtained to determine characteristics of mixed fuel (diesel + syngas) for the engine at varied syngas fuel parameters after the gasifier with steam agent (plasma or other type). Based on these diagrams it is possible to obtain total reducing CO2 emission in atmosphere of ~1.5 times in the CC system with biomass gasifier.

Keywords

Biomass waste gasification gas Combined cycle Ecological efficiency Thermal and chemical recuperation Transformation of exhaust gas into combustible syngas Reducing CO2 emission 

References

  1. 1.
    Boloy RAM (2011) Ecological impacts from syngas burning in internal combustion engine: technical and economical aspects. Renew Sustain Energy Rev 15:5194–5201CrossRefGoogle Scholar
  2. 2.
    Sahoo BB, Saha UK, Sahoo N (2011) Theoretical performance of limits of a syngas–diesel fueled compression ignition engine from second law analysis. Energy 36:760–769CrossRefGoogle Scholar
  3. 3.
    Shah A (2010) Performance and emissions of a spark-ignited engine driven generator on biomass based syngas. Bioresour Technol 101:4656–4661CrossRefGoogle Scholar
  4. 4.
    Sobynin V (2010) Syngasas a fuel for IC and diesel engines: efficiency and harmful emissions cut-off. International Hydrogen Energy Congress and Exhibition, IstanbulGoogle Scholar
  5. 5.
    Mourão R, Marquesi AR, Gorbunov AV et al (2014) Thermochemical assessment of gasification process efficiency of biofuels industry waste with different plasma oxidants. IEEE Trans Plasma Sci No 2 (in press)Google Scholar
  6. 6.
    Kravchenko OP, Lepeshko II, Pilatau AY, Nozhenko OS (2011) Mathematical model of diffusive-kinetic renewal of foods of combustion of hydrocarbon fuels, coll, vol 2. Donetsk Academy of Motor Transport, Donetsk, pp 58–69Google Scholar
  7. 7.
    Coronado CR, Carvalho JA Jr, Silveira JL (2009) Biodiesel CO2 emissions: a comparison with the main fuels in the Brazilian market. Fuel Process Technol 90:204–211CrossRefGoogle Scholar
  8. 8.
    Coronado CR, Carvalho JA Jr, Yoshioka JT (2009) Determination of ecological efficiency in internal combustion engines: the use of biodiesel. Appl Therm Eng 29:1887–1892CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2014

Authors and Affiliations

  • A. Y. Pilatau
    • 1
  • H. A. Viarshyna
    • 1
  • A. V. Gorbunov
    • 2
  • O. S. Nozhenko
    • 3
  • H. S. Maciel
    • 4
  • V. Y. Baranov
    • 3
  • O. V. Mucha
    • 3
  • R. Maurao
    • 2
  • P. T. Lacava
    • 2
  • I. Liapeshko
    • 3
  • G. Petraconi Filho
    • 2
  • A. Matus
    • 1
  1. 1.Belarus National Technical UniversityMinskBelarus
  2. 2.Technological Institute of Aeronautics (ITA)São José dos CamposBrazil
  3. 3.Volodymyr Dahl East-Ukrainian National UniversityLuganskUkraine
  4. 4.Institute for Research and DevelopmentIP&D/UNIVAPSão José dos CamposBrazil

Personalised recommendations