Advertisement

Dopamine and Gambling Disorder: Prospects for Personalized Treatment

  • Andrew KayserEmail author
Gambling (L Clark, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Gambling

Abstract

Purpose of Review

To address variation in the severity of gambling disorder, this review evaluates the contribution of mesocorticolimbic dopamine neurons to potential behavioral endophenotypes, the influence of individual differences in the dopamine system on gambling and related behaviors, and the possible role for dopaminergic medications in the treatment of gambling disorder.

Recent Findings

Newer work has suggested that dopaminergic dysfunction can lead to increased reward anticipation and a greater sensitivity to uncertainty, which in turn may drive addictive gambling behaviors. In addition, increased impulsivity, a well-recognized risk factor for gambling disorder, has been linked to dopaminergic dysfunction. More recently, emerging evidence has suggested that dopaminergic medications can influence the discounting of delayed rewards.

Summary

Dopaminergic drugs that increase the salience of long-term over short-term goals may ameliorate symptoms of impulsive individuals with gambling disorder. More broadly, improved understanding of intermediate behavioral and other phenotypes with a defined neurobiological substrate may allow for personalized treatment of gambling disorder and other psychiatric conditions.

Keywords

Dopamine Gambling Addiction Impulsivity Delay discounting Computational psychiatry 

Notes

Acknowledgments

Thanks go to Howard Fields and Jan Peters for reading through an earlier version of this manuscript, and to the colleagues and research subjects who contributed to our studies included in this review. Of course, any errors belong to the author alone.

Funding Information

This work was supported by NIH grants AA026587 and MH112775.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kozak K, Lucatch AM, Lowe DJE, Balodis IM, MacKillop J, George TP. The neurobiology of impulsivity and substance use disorders: implications for treatment. Ann N Y Acad Sci. 2018;5.  https://doi.org/10.1111/nyas.13977. [Epub ahead of print].
  2. 2.
    Zald DH, Treadway MT. Reward processing, Neuroeconomics, and psychopathology. Annu Rev Clin Psychol. 2017;13:471–95.PubMedPubMedCentralGoogle Scholar
  3. 3.
    George O, Koob G. Individual differences in the neuropsychopathology of addiction. Dialogues Clin Neurosci. 2018;19(3):217–29.Google Scholar
  4. 4.
    Maclaren VV, Fugelsang JA, Harrigan KA, Dixon MJ. The personality of pathological gamblers: a meta-analysis. Clin Psychol Rev. 2011;31(6):1057–67.PubMedGoogle Scholar
  5. 5.
    Suomi A, Dowling NA, Jackson AC. Problem gambling subtypes based on psychological distress, alcohol abuse and impulsivity. Addict Behav. 2014;39(12):1741–5.PubMedGoogle Scholar
  6. 6.
    Stewart SH, Zack M, Collins P, Klein RM. Subtyping pathological gamblers on the basis of affective motivations for gambling: relations to gambling problems, drinking problems, and affective motivations for drinking. Psychol Addict Behav. 2008;22(2):257–68.PubMedGoogle Scholar
  7. 7.
    Khazaal Y, Chatton A, Achab S, Monney G, Thorens G, Dufour M, et al. Internet gamblers differ on social variables: a latent class analysis. J Gambl Stud. 2017;33(3):881–97.PubMedGoogle Scholar
  8. 8.
    Challet-Bouju G, Hardouin JB, Renard N, Legauffre C, Valleur M, Magalon D, et al. A gamblers clustering based on their favorite gambling activity. J Gambl Stud. 2015;31(4):1767–88.PubMedGoogle Scholar
  9. 9.
    Heiskanen M, Toikka A. Clustering Finnish gambler profiles based on the money and time consumed in gambling activities. J Gambl Stud. 2016;32(2):363–77.PubMedGoogle Scholar
  10. 10.
    Bullock SA, Potenza MN. Pathological gambling: Neuropsychopharmacology and treatment. Curr Psychopharmacol. 2012;1(1).  https://doi.org/10.2174/2211556011201010067.
  11. 11.
    Blaszczynski A, Nower L. A pathways model of problem and pathological gambling. Addiction. 2002;97(5):487–99.PubMedGoogle Scholar
  12. 12.
    Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18(12):741–52.PubMedGoogle Scholar
  13. 13.
    Lind PA, Zhu G, Montgomery GW, Madden PA, Heath AC, Martin NG, et al. Genome-wide association study of a quantitative disordered gambling trait. Addict Biol. 2013;18(3):511–22.PubMedGoogle Scholar
  14. 14.
    Lobo DS, Aleksandrova L, Knight J, Casey DM. el-Guebaly N, Nobrega JN, et al. addiction-related genes in gambling disorders: new insights from parallel human and pre-clinical models. Mol Psychiatry. 2015;20(8):1002–10.PubMedGoogle Scholar
  15. 15.
    Sescousse G, den Ouden HE. Gambling rats and gambling addiction: reconciling the role of dopamine in irrationality. J Neurosci. 2013;33(8):3256–8.PubMedGoogle Scholar
  16. 16.
    •• Sittig LJ, Carbonetto P, Engel KA, Krauss KS, Barrios-Camacho CM, Palmer AA. Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron. 2016;91(6):1253–9 This important study demonstrates that the behavioral effects of genetic mutations introduced into rodents depend greatly on the specific rodent strain, pointing toward the importance of individual differences in humans. PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lobo DS, Souza RP, Tong RP, Casey DM, Hodgins DC, Smith GJ, et al. Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects. Biol Psychol. 2010;85(1):33–7.PubMedGoogle Scholar
  18. 18.
    Lim S, Ha J, Choi SW, Kang SG, Shin YC. Association study on pathological gambling and polymorphisms of dopamine D1, D2, D3, and D4 receptor genes in a Korean population. J Gambl Stud. 2012;28(3):481–91.PubMedGoogle Scholar
  19. 19.
    Vallelunga A, Flaibani R, Formento-Dojot P, Biundo R, Facchini S, Antonini A. Role of genetic polymorphisms of the dopaminergic system in Parkinson's disease patients with impulse control disorders. Parkinsonism Relat Disord. 2012;18(4):397–9.PubMedGoogle Scholar
  20. 20.
    Hillemacher T, Frieling H, Buchholz V, Hussein R, Bleich S, Meyer C, et al. Alterations in DNA-methylation of the dopamine-receptor 2 gene are associated with abstinence and health care utilization in individuals with a lifetime history of pathologic gambling. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;63:30–4.Google Scholar
  21. 21.
    Grant JE, Leppink EW, Redden SA, Odlaug BL, Chamberlain SR. COMT genotype, gambling activity, and cognition. J Psychiatr Res. 2015;68:371–6.PubMedGoogle Scholar
  22. 22.
    Yang BZ, Balodis IM, Lacadie CM, Xu J, Potenza MN. A preliminary study of DBH (encoding dopamine Beta-hydroxylase) genetic variation and neural correlates of emotional and motivational processing in individuals with and without pathological gambling. J Behav Addict. 2016;5(2):282–92.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Fagundo AB, Fernandez-Aranda F, de la Torre R, Verdejo-Garcia A, Granero R, Penelo E, et al. Dopamine DRD2/ANKK1 Taq1A and DAT1 VNTR polymorphisms are associated with a cognitive flexibility profile in pathological gamblers. J Psychopharmacol. 2014;28(12):1170–7.PubMedGoogle Scholar
  24. 24.
    Gray JC, MacKillop J. Genetic basis of delay discounting in frequent gamblers: examination of a priori candidates and exploration of a panel of dopamine-related loci. Brain Behav. 2014;4(6):812–21.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Voon V, Napier TC, Frank MJ, Sgambato-Faure V, Grace AA, Rodriguez-Oroz M, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurol. 2017;16(3):238–50.PubMedGoogle Scholar
  26. 26.
    Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014;174(12):1930–3.PubMedGoogle Scholar
  27. 27.
    Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse control disorder in Parkinson's disease: a meta-analysis of cognitive, affective, and motivational correlates. Front Neurol. 2018;9:654.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Santangelo G, Raimo S, Barone P. The relationship between impulse control disorders and cognitive dysfunctions in Parkinson's disease: a meta-analysis. Neurosci Biobehav Rev. 2017;77:129–47.PubMedGoogle Scholar
  29. 29.
    Bancos I, Nannenga MR, Bostwick JM, Silber MH, Erickson D, Nippoldt TB. Impulse control disorders in patients with dopamine agonist-treated prolactinomas and nonfunctioning pituitary adenomas: a case-control study. Clin Endocrinol. 2014;80(6):863–8.Google Scholar
  30. 30.
    Martinkova J, Trejbalova L, Sasikova M, Benetin J, Valkovic P. Impulse control disorders associated with dopaminergic medication in patients with pituitary adenomas. Clin Neuropharmacol. 2011;34(5):179–81.PubMedGoogle Scholar
  31. 31.
    Cornelius JR, Tippmann-Peikert M, Slocumb NL, Frerichs CF, Silber MH. Impulse control disorders with the use of dopaminergic agents in restless legs syndrome: a case-control study. Sleep. 2010;33(1):81–7.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Voon V, Schoerling A, Wenzel S, Ekanayake V, Reiff J, Trenkwalder C, et al. Frequency of impulse control behaviours associated with dopaminergic therapy in restless legs syndrome. BMC Neurol. 2011;11:117.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dang D, Cunnington D, Swieca J. The emergence of devastating impulse control disorders during dopamine agonist therapy of the restless legs syndrome. Clin Neuropharmacol. 2011;34(2):66–70.PubMedGoogle Scholar
  34. 34.
    Gendreau KE, Potenza MN. Detecting associations between behavioral addictions and dopamine agonists in the Food & Drug Administration's adverse event database. J Behav Addict. 2014;3(1):21–6.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction. 2013;108(5):953–63.PubMedGoogle Scholar
  36. 36.
    Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ, et al. Striatal dopamine D(2)/D(3) receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage. 2012;63(1):40–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Joutsa J, Voon V, Johansson J, Niemela S, Bergman J, Kaasinen V. Dopaminergic function and intertemporal choice. Transl Psychiatry. 2015;5:e491.PubMedPubMedCentralGoogle Scholar
  38. 38.
    van Holst RJ, Sescousse G, Janssen LK, Janssen M, Berry AS, Jagust WJ, et al. Increased striatal dopamine synthesis capacity in gambling addiction. Biol Psychiatry. 2018;83(12):1036–43.PubMedGoogle Scholar
  39. 39.
    Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, et al. Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology. 2017;42(5):1169–77.PubMedGoogle Scholar
  40. 40.
    Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA, et al. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Mol Psychiatry. 2014;19(12):1305–13.PubMedGoogle Scholar
  41. 41.
    Joutsa J, Johansson J, Niemela S, Ollikainen A, Hirvonen MM, Piepponen P, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage. 2012;60(4):1992–9.PubMedGoogle Scholar
  42. 42.
    Linnet J. The Iowa gambling task and the three fallacies of dopamine in gambling disorder. Front Psychol. 2013;4:709.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Potenza MN. Searching for replicable dopamine-related findings in gambling disorder. Biol Psychiatry. 2018;83(12):984–6.PubMedGoogle Scholar
  44. 44.
    Clark L, Boileau I, Zack M. Neuroimaging of reward mechanisms in gambling disorder: an integrative review. Mol Psychiatry. 2018;13.  https://doi.org/10.1038/s41380-018-0230-2. [Epub ahead of print].
  45. 45.
    • Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74(4):387–98 This meta-analysis nicely summarizes the neuroimaging literature related to addiction, across both substance use and pathological gambling. PubMedGoogle Scholar
  46. 46.
    Campbell-Meiklejohn D, Simonsen A, Scheel-Kruger J, Wohlert V, Gjerloff T, Frith CD, et al. In for a penny, in for a pound: methylphenidate reduces the inhibitory effect of high stakes on persistent risky choice. J Neurosci. 2012;32(38):13032–8.PubMedGoogle Scholar
  47. 47.
    Zack MH, Lobo DS, Biback C, Fang T, Smart K, Tatone D, et al. Parallel role for the dopamine D1 receptor in gambling and amphetamine reinforcement in healthy volunteers. J Psychopharmacol. 2017;31(1):31–42.PubMedGoogle Scholar
  48. 48.
    Rigoli F, Rutledge RB, Chew B, Ousdal OT, Dayan P, Dolan RJ. Dopamine increases a value-independent gambling propensity. Neuropsychopharmacology. 2016;41(11):2658–67.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Pine A, Shiner T, Seymour B, Dolan RJ. Dopamine, time, and impulsivity in humans. J Neurosci. 2010;30(26):8888–96.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Eisenegger C, Knoch D, Ebstein RP, Gianotti LR, Sandor PS, Fehr E. Dopamine receptor D4 polymorphism predicts the effect of L-DOPA on gambling behavior. Biol Psychiatry. 2010;67(8):702–6.PubMedGoogle Scholar
  51. 51.
    Norbury A, Manohar S, Rogers RD, Husain M. Dopamine modulates risk-taking as a function of baseline sensation-seeking trait. J Neurosci. 2013;33(32):12982–6.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Tremblay AM, Desmond RC, Poulos CX, Zack M. Haloperidol modifies instrumental aspects of slot machine gambling in pathological gamblers and healthy controls. Addict Biol. 2011;16(3):467–84.PubMedGoogle Scholar
  53. 53.
    Porchet RI, Boekhoudt L, Studer B, Gandamaneni PK, Rani N, Binnamangala S, et al. Opioidergic and dopaminergic manipulation of gambling tendencies: a preliminary study in male recreational gamblers. Front Behav Neurosci. 2013;7:138.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Janssen LK, Sescousse G, Hashemi MM, Timmer MH, ter Huurne NP, Geurts DE, et al. Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers. Psychopharmacology. 2015;232(18):3345–53.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ojala KE, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, Ter Huurne NP, et al. Dopaminergic drug effects on probability weighting during risky decision making. eNeuro. 2018;5(2).  https://doi.org/10.1523/ENEURO.0330-18.2018.
  56. 56.
    Etminan M, Sodhi M, Samii A, Procyshyn RM, Guo M, Carleton BC. Risk of gambling disorder and impulse control disorder with aripiprazole, Pramipexole, and Ropinirole: a Pharmacoepidemiologic study. J Clin Psychopharmacol. 2017;37(1):102–4.PubMedGoogle Scholar
  57. 57.
    Yau YH, Potenza MN. Gambling disorder and other behavioral addictions: recognition and treatment. Harv Rev Psychiatry. 2015;23(2):134–46.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Bartley CA, Bloch MH. Meta-analysis: pharmacological treatment of pathological gambling. Expert Rev Neurother. 2013;13(8):887–94.PubMedGoogle Scholar
  59. 59.
    Arnsten AF, Wang M. Targeting prefrontal cortical Systems for Drug Development: potential therapies for cognitive disorders. Annu Rev Pharmacol Toxicol. 2016;56:339–60.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Cools R, D'Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69(12):e113–25.PubMedPubMedCentralGoogle Scholar
  61. 61.
    D'Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 2015;66:115–42.PubMedGoogle Scholar
  62. 62.
    Cools R, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci. 2008;28(5):1208–12.PubMedGoogle Scholar
  63. 63.
    Kimberg DY, D'Esposito M, Farah MJ. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport. 1997;8(16):3581–5.PubMedGoogle Scholar
  64. 64.
    Cools R, Barker RA, Sahakian BJ, Robbins TW. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia. 2003;41(11):1431–41.PubMedGoogle Scholar
  65. 65.
    Cools R, Sheridan M, Jacobs E, D'Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27(20):5506–14.PubMedGoogle Scholar
  66. 66.
    Kayser AS, Allen DC, Navarro-Cebrian A, Mitchell JM, Fields HL. Dopamine, corticostriatal connectivity, and intertemporal choice. J Neurosci. 2012;32(27):9402–9.PubMedGoogle Scholar
  67. 67.
    • Cools R. The costs and benefits of brain dopamine for cognitive control. Wiley Interdiscip Rev Cogn Sci. 2016;7(5):317–29 This recent review nicely summarizes the role of dopamine in the cognitive process about which we know the most, and places it in the context of other behaviors. PubMedGoogle Scholar
  68. 68.
    Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U" toward a family of functions. Front Neurosci. 2013;7:62.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Potenza MN. The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci. 2014;18(8):429–38.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Petry NM. Substance abuse, pathological gambling, and impulsiveness. Drug Alcohol Depend. 2001;63(1):29–38.PubMedGoogle Scholar
  71. 71.
    Bickel WK, Koffarnus MN, Moody L, Wilson AG. The behavioral- and neuro-economic process of temporal discounting: A candidate behavioral marker of addiction. Neuropharmacology. 2014;76(Pt B):518–27.PubMedGoogle Scholar
  72. 72.
    Andrade LF, Petry NM. Delay and probability discounting in pathological gamblers with and without a history of substance use problems. Psychopharmacology. 2012;219(2):491–9.PubMedGoogle Scholar
  73. 73.
    Mackillop J, Miller JD, Fortune E, Maples J, Lance CE, Campbell WK, et al. Multidimensional examination of impulsivity in relation to disordered gambling. Exp Clin Psychopharmacol. 2014;22(2):176–85.PubMedPubMedCentralGoogle Scholar
  74. 74.
    • Miedl SF, Peters J, Buchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69(2):177–86 This study demonstrates that not all forms of discounting are affected in subjects with gambling disorder. PubMedGoogle Scholar
  75. 75.
    Miedl SF, Wiswede D, Marco-Pallares J, Ye Z, Fehr T, Herrmann M, et al. The neural basis of impulsive discounting in pathological gamblers. Brain Imaging Behav. 2015;9(4):887–98.PubMedGoogle Scholar
  76. 76.
    •• Peters J, Buchel C. The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn Sci. 2011;15(5):227–39 This excellent review introduces and evaluates different potential mechanisms that account for individual differences in delay discounting. PubMedGoogle Scholar
  77. 77.
    Miedl SF, Buchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34(13):4750–5.PubMedGoogle Scholar
  78. 78.
    Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic network differences in human impulsivity. Science. 2010;329(5991):532.PubMedPubMedCentralGoogle Scholar
  79. 79.
    de Wit H, Enggasser JL, Richards JB. Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology. 2002;27(5):813–25.PubMedGoogle Scholar
  80. 80.
    Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–63.PubMedGoogle Scholar
  81. 81.
    Badre D, Kayser AS, D'Esposito M. Frontal cortex and the discovery of abstract action rules. Neuron. 2010;66(2):315–26.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kayser AS, Vega T, Weinstein D, Peters J, Mitchell JM. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers. NeuroImage Clin. 2017;13:339–48.PubMedGoogle Scholar
  83. 83.
    Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646–8.PubMedGoogle Scholar
  84. 84.
    Peters J, Buchel C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron. 2010;66(1):138–48.PubMedGoogle Scholar
  85. 85.
    Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75(5):807–21.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci. 2007;27(38):10196–209.PubMedGoogle Scholar
  87. 87.
    Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991–6.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Mitchell JM, Weinstein D, Vega T, Kayser AS. Dopamine, time perception, and future time perspective. Psychopharmacology. 2018;235(10):2783–93.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Kayser AS, Mitchell JM, Weinstein D, Frank MJ. Dopamine, locus of control, and the exploration-exploitation tradeoff. Neuropsychopharmacology. 2015;40(2):454–62.PubMedGoogle Scholar
  90. 90.
    Coker AR, Weinstein D, Vega T, Miller C, Kayser AS, Mitchell JM. The effects of the COMT inhibitor tolcapone and sex on alcohol consumption in individuals with alcohol use disorder (AUD). Program No. 418.02. Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018.Google Scholar
  91. 91.
    Arnsten AF, Girgis RR, Gray DL, Mailman RB. Novel dopamine therapeutics for cognitive deficits in schizophrenia. Biol Psychiatry. 2017;81(1):67–77.PubMedGoogle Scholar
  92. 92.
    Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife. 2016;5.  https://doi.org/10.7554/eLife.11305.
  93. 93.
    Deserno L, Huys QJ, Boehme R, Buchert R, Heinze HJ, Grace AA, et al. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci U S A. 2015;112(5):1595–600.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kroemer NB, Lee Y, Pooseh S, Eppinger B, Goschke T. Smolka MN. Neuroimage: L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action; 2018.Google Scholar
  95. 95.
    Wunderlich K, Smittenaar P, Dolan RJ. Dopamine enhances model-based over model-free choice behavior. Neuron. 2012;75(3):418–24.PubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Department of Neurology, Weill Institute for NeurosciencesUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Division of Neurology, Department of Veterans AffairsMartinezUSA

Personalised recommendations