Advertisement

Local spatial variation in the population dynamics of two tree species in a region of Atlantic Rainforest, SE Brazil

  • Lucas Benedito Gonsales RosaEmail author
  • Maurício Bonesso Sampaio
  • Valéria Forni Martins
Original Article

Abstract

The population dynamics of species with distinct geographic distribution ranges and local abundances can be differently influenced by environmental differences at both the regional and local scales. Here, we test for local spatial variation in the dynamics of different populations of two tree species with these distinct characteristics. We took advantage of one population census and carried out a new census of two populations of Faramea picinguabae M.Gomes (Rubiaceae) and Mollinedia schottiana (Spreng.) Perkins (Monimiaceae) at two non-contiguous, permanent 1-ha plots (B and E) located at a region of Atlantic Rainforest, SE Brazil. The plots differed in declivity and soil coverage by rocky boulders. The annual population growth rate (λ) differed only for F. picinguabae (λB = 1.009, λE = 0.959), which presents restricted geographic distribution range and low local abundance in relation to M. schottiana (λB = 0.982, λE = 0.987). The decline in three out of four populations may result from a severe drought in SE Brazil in the last decade. The increase in F. picinguabae at plot B is likely a response to the lower soil coverage by rocky boulders at this plot. Even though we evaluated only two populations of two species, our conclusions open a new venue for the investigation of population dynamics. Within the same forest, some species might show spatial variation in population dynamics mediated by environmental differences at the local scale, while others might not. In the long term, differences among species are likely to result in important changes in community structure and dynamics, as well as in ecosystem functions.

Keywords

Demographic rates Elasticity Environmental differences Lowland Atlantic Rainforest LTRE Population growth 

Notes

Acknowledgements

We thank Professors FAMS, ASP, and RAGV, and PhDs LFA and PPL for their valuable comments. This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) (1580081/2016)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—PhD scholarship to VFM (142295/2006-0) and Edital Universal (459941/2014-3), Fundação de Amparo à Pesquisa do Estado de São Paulo—Theme Project “Functional Gradient” (Biota/FAPESP 03/12595-7), and Programa de Pós-Graduação em Agricultura e Ambiente—UFSCar.

Authors’ contributions

LBGR, MBS, and VFM contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40415_2019_563_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 88 kb)
40415_2019_563_MOESM2_ESM.docx (528 kb)
Supplementary material 2 (DOCX 528 kb)
40415_2019_563_MOESM3_ESM.docx (371 kb)
Supplementary material 3 (DOCX 370 kb)

References

  1. Amadeu LS, Sampaio MB, Santos FAM (2016) Influence of light and plant size on the reproduction and growth of small palm tree species: comparing two methods for measuring canopy openness. Am J Bot 103:1678–1686.  https://doi.org/10.3732/ajb.1600178 CrossRefPubMedGoogle Scholar
  2. Berry EJ, Gorchov DL, Endress BA, Stevens MHH (2008) Source-sink dynamics within a plant population: the impact of substrate and herbivory on palm demography. Popul Ecol 50:63–77.  https://doi.org/10.1007/s10144-007-0067-z CrossRefGoogle Scholar
  3. Bertani DF (2006) Ecologia de populações de Psychotria suterella Müll. Arg. (Rubiaceae) em uma paisagem fragmentada de Mata Atlântica. PhD Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  4. Campos MCRD, Tamashiro JY, Assis MA, Joly CA (2011) Florística e fitossociologia do componente arbóreo da transição Floresta Ombrófila Densa das Terras Baixas-Floresta Ombrófila Densa Submontana do Núcleo Picinguaba/PESM, Ubatuba, sudeste do Brasil. Biota Neotrop 11:301–312.  https://doi.org/10.1590/S1676-06032011000200030 CrossRefGoogle Scholar
  5. Caswell H (1989) The analysis of life table response experiments. I. Decomposition of effects on population growth rate. Ecol Model 46:221–237.  https://doi.org/10.1016/0304-3800(89)90019-7 CrossRefGoogle Scholar
  6. Caswell H (2001) Matrix population models: Construction, analysis, and interpretation, 2nd edn. Sinauer, SunderlandGoogle Scholar
  7. Caswell H (2010) Life table response experiment analysis of the stochastic growth rate. J Ecol 98:324–333.  https://doi.org/10.1111/j.1365-2745.2009.01627.x CrossRefGoogle Scholar
  8. Ciiagro (2017) Centro integrado de informações agrometeorológicas. http://www.ciiagro.sp.gov.br/. Accessed 20 Aug 2017
  9. Cruz GCA, Pimenta JA, Carvalho ES et al (2017) The population dynamics of Astronium graveolens Jacq. differ between topographically distinct areas in South Brazil. Trop Ecol 58:151–165Google Scholar
  10. Davison R, Jacquemyn H, Adriaens D, Honnay O, De Kroon H, Tuljapurkar S (2010) Demographic effects of extreme weather events on a short-lived calcareous grassland species: stochastic life table response experiments. J Ecol 98:255–267.  https://doi.org/10.1111/j.1365-2745.2009.01611.x CrossRefGoogle Scholar
  11. De Kroon H, Van Groenendael J, Ehrlen J (2000) Elasticities a review of methods and model limitations. Ecology 81:607–618.  https://doi.org/10.1890/0012-9658(2000)081%5b0607:earoma%5d2.0.co;2 CrossRefGoogle Scholar
  12. Dunham AE, Razafindratsima OH, Rakotonirina P, Wright PC (2018) Fruiting phenology is linked to rainfall variability in a tropical rain forest. Biotropica 50:396–404.  https://doi.org/10.1111/btp.12564 CrossRefGoogle Scholar
  13. Eisenlohr PV, Alves LF, Bernacci LC et al (2013) Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. Biodivers Conserv 22:2767–2783.  https://doi.org/10.1007/s10531-013-0553-x CrossRefGoogle Scholar
  14. Frazer GW, Trofymow JA, Lertzman KP (2000) Canopy openness and leaf area in chronosequences of coastal temperate rainforests. Can J For Res 30:239–256.  https://doi.org/10.1139/x99-201 CrossRefGoogle Scholar
  15. Freckleton RP, Matos DM, Bovi MLA, Watkinson AR (2003) Predicting the impacts of harvesting using structured population models: the importance of density-dependence and timing of harvest for a tropical palm tree. J Appl Ecol 40:846–858.  https://doi.org/10.1046/j.1365-2664.2003.00842.x CrossRefGoogle Scholar
  16. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233.  https://doi.org/10.1146/annurev.es.19.110188.001231 CrossRefGoogle Scholar
  17. Gomes M (2003) Novas espécies de Coussarea Aubl. e Faramea Aubl. (Rubiaceae, tribo Coussareae). Acta Bot Bras 1:439–448.  https://doi.org/10.1590/S0102-33062003000300010 CrossRefGoogle Scholar
  18. Hiernaux P, Diarra L, Trichon V, Mougin E, Soumaguel N, Baup F (2009) Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). J Hydrol 375:103–113.  https://doi.org/10.1016/j.jhydrol.2009.01.043 CrossRefGoogle Scholar
  19. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, New JerseyGoogle Scholar
  20. Joly CA, Assis MA, Bernacci LC, Tamashiro JY et al (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145.  https://doi.org/10.1016/j.jhydrol.2009.01.043 CrossRefGoogle Scholar
  21. Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479.  https://doi.org/10.1146/annurev.es.16.110185.002311 CrossRefGoogle Scholar
  22. Kwit C, Horvitz CC, Platt WJ (2004) Conserving slow-growing, long-lived tree species: input from the demography of a rare understory conifer, Taxus floridana. Conserv Biol 18:432–443.  https://doi.org/10.1111/j.1523-1739.2004.00567.x CrossRefGoogle Scholar
  23. Levine JM, McEachern AK, Cowan C (2008) Rainfall effects on rare annual plants. J Ecol 96:795–806.  https://doi.org/10.1111/j.1365-2745.2008.01375.x CrossRefGoogle Scholar
  24. Longo M, Knox RG, Levine NM et al (2018) Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol 291:914–931.  https://doi.org/10.1111/nph.15185 CrossRefGoogle Scholar
  25. Lucas RW, Forseth IN, Casper BB (2008) Using rainout shelters to evaluate climate change effects on the demography of Cryptantha flava. J Ecol 96:514–522.  https://doi.org/10.1111/j.1365-2745.2007.01350.x CrossRefGoogle Scholar
  26. Martínez-Ramos M, Anten NP, Ackerly DD (2009) Defoliation and ENSO effects on vital rates of an understorey tropical rain forest palm. J Ecol 10:1050–1061.  https://doi.org/10.1111/j.1365-2745.2009.01531.x CrossRefGoogle Scholar
  27. Martins VF (2011) Padrão espacial de três espécies arbóreas ornitocóricas da Floresta Ombrófila Densa de Terras Baixas no litoral norte do estado de São Paulo. PhD Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  28. Martins SC, Neto ES, Piccolo MC et al (2015) Soil texture and chemical characteristics along an elevation range in the coastal Atlantic forest of Southeast Brazil. Geoderma Reg 5:106–116.  https://doi.org/10.1016/j.geodrs.2015.04.005 CrossRefGoogle Scholar
  29. Martins VF, Seger GDS, Wiegand T, Santos FAM (2018) Phylogeny contributes more than site characteristics and traits to the spatial distribution pattern of tropical tree populations. Oikos 127:1368–1379.  https://doi.org/10.1111/oik.05142 CrossRefGoogle Scholar
  30. Maruyama PK, Amorim FW, Oliveira PE (2010) Night and day service: distyly and mixed pollination system in Faramea cyanea (Rubiaceae). Flora 205:818–824.  https://doi.org/10.1016/j.flora.2010.01.004 CrossRefGoogle Scholar
  31. Matos SDM, Freckleton RP, Watkinson AR (1999) The role of density dependence in the population dynamics of a tropical palm. Ecology 80:2635–2650.  https://doi.org/10.1890/0012-9658(1999)080%5b2635:troddi%5d2.0.co;2 CrossRefGoogle Scholar
  32. Morris WF, Doak DF (2002) Quantitative conservation biology. Sinauer, SunderlandGoogle Scholar
  33. Muler AE, Rother DC, Brancalion PS, Naves RP, Rodrigues RR, Pizo MA (2014) Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. For Ecol Manag 324:117–125.  https://doi.org/10.1016/j.foreco.2013.09.001 CrossRefGoogle Scholar
  34. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  35. Olsen SL, Töpper JP, Skarpaas O, Vandvik V, Klanderud K (2016) From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Glob Change Biol 22:1915–1926.  https://doi.org/10.1111/gcb.13241 CrossRefGoogle Scholar
  36. Organización Meteorológica Mundial (2018) Declaración de la OMM sobre el estado del clima mundial en 2017. https://library.wmo.int/index.php?lvl=notice_display&id=20223#.XHRGV-hKhPY. Accessed 17 Jun 2018
  37. Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623.  https://doi.org/10.1111/j.0022-0477.2004.00894.x CrossRefGoogle Scholar
  38. Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622.  https://doi.org/10.1146/annurev-ecolsys-110512-135914 CrossRefGoogle Scholar
  39. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  40. Peixoto AL (1987) Revisão taxonômica do gênero Mollinedia Ruiz et Pavon : Monimiaceae, Monimieideae. PhD Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  41. Peterson CJ, Campbell JE (1993) Microsite differences and temporal change in plant communities of tree fall pits and mounds in an old-growth forest. Bull Torrey Bot Club 120:451–460.  https://doi.org/10.2307/2996750 CrossRefGoogle Scholar
  42. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442.  https://doi.org/10.1126/science.282.5388.439 CrossRefPubMedGoogle Scholar
  43. Phillips OL, Aragão LE, Lewis SL et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347.  https://doi.org/10.1126/science.1164033 CrossRefPubMedGoogle Scholar
  44. Pontara V, Bueno ML, Garcia LE et al (2016) Fine-scale variation in topography and seasonality determine radial growth of an endangered tree in Brazilian Atlantic forest. Plant Soil 403:115–128.  https://doi.org/10.1007/s11104-016-2795-3 CrossRefGoogle Scholar
  45. Quitete-Portela RC, Bruna EM, Santos FAM (2010) Are protected areas really protecting populations? A test with an Atlantic rain forest palm. Trop Conserv Sci 3:361–372.  https://doi.org/10.1177/194008291000300402 CrossRefGoogle Scholar
  46. Ramula S, Rees M, Buckley Y (2009) M. Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. J Appl Ecol 46:048–1053.  https://doi.org/10.1111/j.1365-2664.2009.01706.x CrossRefGoogle Scholar
  47. R Core Team (2017) R: a language and environment for statistical computing. https://www.R-project.org/. Accessed 17 Jun 2017
  48. Rich PM (1990) Characterizing plant canopies with hemispherical photographs. Remote Sens Rev 5:13–29.  https://doi.org/10.1080/02757259009532119 CrossRefGoogle Scholar
  49. Robert A, Moravie MA (2003) Topographic variation and stand heterogeneity in a wet evergreen forest of India. J Trop Ecol 19:697–707.  https://doi.org/10.1017/S0266467403006096 CrossRefGoogle Scholar
  50. Rodrigues LA, Carvalho DAD, Oliveira Filho ATD, Curi N (2007) Efeitos de solos e topografia sobre a distribuição de espécies arbóreas em um fragmento de floresta estacional semidecidual, em Luminárias, MG. Rev Árvore 31:25–35.  https://doi.org/10.1590/S0100-67622007000100004 CrossRefGoogle Scholar
  51. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348.  https://doi.org/10.1016/j.tree.2011.03.024 CrossRefPubMedGoogle Scholar
  52. Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean Rain forest. J Ecol 93:879–889.  https://doi.org/10.1111/j.1365-2745.2005.01030.x CrossRefGoogle Scholar
  53. Sapkota IP, Odén PC (2009) Gap characteristics and their effects on regeneration, dominance and early growth of woody species. J Plant Ecol 2:21–29.  https://doi.org/10.1093/jpe/rtp004 CrossRefGoogle Scholar
  54. Stubben CJ, Milligan BG (2007) Estimating and analyzing demographic models using the popbio Package in R. J Stat Softw 22:1–23.  https://doi.org/10.18637/jss.v022.i11 CrossRefGoogle Scholar
  55. Svenning JC (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of Neotropical Rain-Forest palms (Arecaceae). Bot Rev 67:1–53.  https://doi.org/10.1007/BF02857848 CrossRefGoogle Scholar
  56. Travers SE (1999) Environmental effects on components of pollen performance in Faramea occidentalis (L.) A. Rich. (Rubiaceae). Biotropica 31:159–166.  https://doi.org/10.1111/j.1744-7429.1999.tb00126.x CrossRefGoogle Scholar
  57. Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manag 135:155–167.  https://doi.org/10.1016/S0378-1127(00)00307-8 CrossRefGoogle Scholar
  58. Warton DI, Hui FK (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10.  https://doi.org/10.1890/10-0340.1 CrossRefPubMedGoogle Scholar
  59. Wershow ST, DeChaine EG (2018) Retreat to refugia: severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. Am J Bot 105:760–778.  https://doi.org/10.1002/ajb2.1042 CrossRefPubMedGoogle Scholar
  60. Whitmore TC, Brown ND, Swaine MD, Kennedy D, Goodwin-Bailey CI, Gong WK (1993) Use of hemispherical photographs in forest ecology: measurement of gap size and radiation totals in a bornean tropical rain forest. J Trop Ecol 9:131–151.  https://doi.org/10.1017/S0266467400007112 CrossRefGoogle Scholar
  61. Williams GA, Adam P (1994) A review of rainforest pollination and plant-pollinator interactions, with particular reference to Australian subtropical rainforests. Aust Zool 29:177–212.  https://doi.org/10.7882/AZ.1994.006 CrossRefGoogle Scholar
  62. Williams GA, Adam P, Mound LA (2001) Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Wilkiea huegeliana (Monimiaceae). J Nat Hist 35:1–21.  https://doi.org/10.1080/002229301447853 CrossRefGoogle Scholar
  63. Zar JH (2010) Biostatistycal analysis, 15th edn. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Agricultura e AmbienteUniversidade Federal de São CarlosArarasBrazil
  2. 2.Secretaria do Meio Ambiente e Bem-estar AnimalPrefeitura do Município de MaringáMaringáBrazil
  3. 3.Departamento de Ciências da Natureza, Centro de Ciências Agrárias Matemática e EducaçãoUniversidade Federal de São CarlosArarasBrazil
  4. 4.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade de Campinas – UNICAMPCampinasBrazil

Personalised recommendations