Advertisement

Brazilian Journal of Botany

, Volume 42, Issue 3, pp 467–476 | Cite as

Ferns and lycophytes as a tool to evaluate environmental dissimilarity in riparian forests in southern Brazil

  • Vanessa GraeffEmail author
  • Vinícius Leão da Silva
  • Ivanete Teresinha Mallmann
  • Jairo Lizandro Schmitt
Original Article
  • 88 Downloads

Abstract

Riparian forests are heterogeneity due to biological and abiotic variables that influence environmental dynamics. The aim of this study was to investigate the floristic and environmental dissimilarity in three riparian forest fragments. In a 250-m transect, ten plots of 5 × 5 m were drawn in each fragment, totaling 30 plots. Floristic inventories were conducted. Abiotic variables (soil moisture and canopy opening) were measured, and the environmental quality was evaluated through the Rapid Assessment Protocol of Habitat Quality (RAPHQ). A total of 25 species were recorded in 20 genera and 12 families following the asymptote tendency for each fragment. The fragments revealed high diversity, and most species were distributed in diverse genera (FI: 12 species in 10 genera; FII: 13/11; and FIII: 14/14). Only three species were present in all fragments. In general, at least 44% of the species were shared at two or more sites. Our results indicated floristic and community heterogeneity among the fragments analyzed (R = 0.621 global, P = 0.001). Our findings showed that in FI and FII, environmental variations, such as lower scores in RAPHQ and soil moisture, reflected in lower species coverage and more homogeneous plant distribution. In FIII, the same environmental variables resulted greater coverage of plants and a more heterogeneous and equitable distribution among the plots. These results demonstrate that ferns and lycophytes are important tools to evaluate environmental dissimilarity in riparian forests, reasserting the bioindicator potential of these plants.

Keywords

Environmental heterogeneity Fern diversity Phytosociology Tropical lowland forests 

Notes

Acknowledgements

This work was supported by the Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Scholarship No. 88887.146950/2017-00 awarded to VLS], Universidade Feevale for the infrastructure available [JLS is supported by CNPq Proj. No. 308926/2017-0].

Authors’ contributions

V. Graeff contributed to the concept and design of the study, data collection, data analysis and interpretation, manuscript preparation. V. L. da Silva contributed to the concept and design of the study, data collection, data analysis and interpretation, critical revision, adding intellectual content. I. T. Mallmann took part in the concept and design of the study, data collection, data analysis and interpretation, critical revision, adding intellectual content. J. L. Schmitt involved in critical revision, adding intellectual content.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

  1. Biswas SR, Mallik AU (2010) Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91:28–35.  https://doi.org/10.1890/08-0887.1 CrossRefPubMedGoogle Scholar
  2. Bizzo MRO, Menezes J, Andrade SF (2014) Protocolos de avaliação rápida de rios (PAR). Caderno de Estudos Geoambientais (CADEGEO) 4:5–13Google Scholar
  3. Bonnet A, Curcio GR, Lavoranti OJ, Galvão F (2011) Flora epifítica vascular em três unidades vegetacionais do Rio Tibagi, Paraná, Brasil. Rodriguésia 62:491–498.  https://doi.org/10.1590/2175-7860201162305 CrossRefGoogle Scholar
  4. Brade AC (1940) Contribuição para o estudo da flora Pteridhophyta da Serra de Baturité estado do Ceará. Rodriguésia 4:289–314Google Scholar
  5. Brazil (2012) Código Florestal, Lei nº 12.651, de 25 de maio de 2012. http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm. Accessed 23 Nov 2017
  6. Brummitt N, Regan EC, Weatherdon LV, Martin CS, Geijzendorffer IR, Rocchini D, Gavish Y, Haase P, Marsh CJ, Schmeller DS (2017) Taking stock of nature: essential biodiversity. Biol Conserv 213:252–255.  https://doi.org/10.1016/j.biocon.2016.09.006 CrossRefGoogle Scholar
  7. Callisto M, Ferreira W, Moreno P, Goulart MDC, Petrucio M (2002) Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividades de ensino e pesquisa (MG-RJ). Acta Limnol Bras 14:91–98Google Scholar
  8. Carvalho DAC, Oliveira-Filho AT, Vilela EA, Curi N, Van DBE, Fontes MAL, Botezelli L (2005) Distribuição de espécies arbóreo arbustivas ao longo de um gradiente de solos e topografia em um trecho de floresta ripária do Rio São Francisco em Três Marias, MG, Brasil. Revista Brasileira de Botânica 28:329–345.  https://doi.org/10.1590/S0100-84042005000200013 CrossRefGoogle Scholar
  9. Checchia T (2003) Influência da zona ripária sobre os recursos hídricos: Aspectos quantitativos e qualitativos: Zonas Ripárias. In: SEMINÁRIO DE HIDROLOGIA FLORESTAL Florianópolis, 2003. Universidade Federal de Santa Catarina, Centro Tecnológico, Florianópolis. Programa de Pós-Graduação em Engenharia AmbientalGoogle Scholar
  10. Checklist of Ferns and Lycophytes of the World (2016) https://worldplants.webarchiv.kit.edu/ferns/statistics.php. Accessed 15 Mar 2017
  11. Citadini-Zanette V, Santos R, Emerich KH, Pasetto MR, Cemin JG, Fernandes MB (2014) Composição florística de um fragmento florestal ciliar no sul de Santa Catarina. Revista Tecnologia e Ambiente 20:55–70Google Scholar
  12. Clarke KR, Gorley RN (2002) Primer v5.2.9. In: User manual/tutorial. PRIMER-E91 Plymouth, UKGoogle Scholar
  13. Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10.  https://doi.org/10.1016/S1470-160X(01)00003-6 CrossRefGoogle Scholar
  14. Della AP, Falkenberg DB (2019) Pteridophytes as ecological indicators: an overview. Hoehnea 46:1–25.  https://doi.org/10.1590/2236-8906-52/2018 CrossRefGoogle Scholar
  15. Diesel S, Siqueira JC (1991) Estudo fitossociológico herbáceo/arbustivo da mata ripária da bacia hidrográfica do rio dos Sinos, Rio Grande do Sul. Pesquisas Botânica 2:205–257Google Scholar
  16. Dobrovolski R, Both R, Coelho IP, Stolz JFB, Schussler G, Rodrigues GG, Guerra T, Hartz SM (2006) Levantamento das áreas prioritárias para a conservação da Floresta Nacional de São Francisco de Paula (RS, Brasil) e seu entorno. Revista Brasileira de Biociências 4:7–14Google Scholar
  17. Ferrer-Castán D, Vetaas OR (2005) Pteridophyte richness climate and topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns. Glob Ecol Biogeogr 14:155–165.  https://doi.org/10.1111/j.1466-822X.2004.00140.x CrossRefGoogle Scholar
  18. Forsthofer M, Athayde Filho FP (2012) Florística e aspectos ecológicos das samambaias e licófitas ao longo do córrego Cachoeirinha, Nova Xavantina-MT. Pesquisas Botânica 63:1–10Google Scholar
  19. Fortes AB (1959) Geografia Física do Rio Grande do Sul – Instituto Anchietano de Pesquisas, RS, Oficina gráfica da Livraria do Globo, Porto Alegre, 393 pGoogle Scholar
  20. Galindo-Leal C, Câmara IG (2003) Atlantic forest hotspots status: an overview. In: Galindo-Leal Câmara IG (ed) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Center for Applied Biodiversity Science and Island Press, Washington, pp 3–11Google Scholar
  21. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391.  https://doi.org/10.1046/j.1461-0248.2001.00230.x/pdf CrossRefGoogle Scholar
  22. Guislon AV, Ceron K, Elias GA, Santos R, Citadini-Zanette V (2016) Estrutura da vegetação herbácea em paisagens ciliares no sul de Santa Catarina, Brasil. Revista Ambiente & Água 11:650–664.  https://doi.org/10.4136/1980-993X CrossRefGoogle Scholar
  23. Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics package for education and data analysis. Paleontol Electron 4:1–9Google Scholar
  24. Hannaford MJ, Barbour MT, Resh VH (1997) Training reduces observer variabillity in visual-based assessments of stream habitat. J N Am Benthol Soc 4:853–860.  https://doi.org/10.2307/1468176 CrossRefGoogle Scholar
  25. Heink U, Kowarik I (2010) What are indicators? On the definition of indicators in ecology and environmental planning. Ecol Indic 10:584–593.  https://doi.org/10.1016/j.ecolind.2009.09.009 CrossRefGoogle Scholar
  26. Instituto Brasileiro de Geografia e Estatística (IBGE) (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro, p 271Google Scholar
  27. Joly CA, Spigolon JR, Lieberg SA, Salis SM, Aidar MPM, Metzger JPW, Zickel CS, Lobo PC, Shimabukuro MCM, Salino A (2000) Projeto Jacaré-Pepira—O desenvolvimento de um modelo de recomposição da mata ciliar com base na florística regional. In: Rodrigues RR, Leitão-Filho HF (eds) Matas Ciliares: conservação e recuperação. EDUSP/FAPESP, São Paulo, pp 271–287Google Scholar
  28. Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195.  https://doi.org/10.1111/j.1365-2745.2005.01071.x CrossRefGoogle Scholar
  29. Jones MM, Olivas P, Tuomisto H, Clark DB (2007) Environmental and neighborhood effects on tree fern distributions in a neotropical lowland rain forest. J Veg Sci 18:13–24.  https://doi.org/10.1111/j.1654-1103.2007.tb02511.x CrossRefGoogle Scholar
  30. Juretig F (2013) eigenprcomp: computes confidence intervals for principal components. R package version 1.0. https://CRAN.R-project.org/package=eigenprcomp
  31. Kessler M, Kluge J, Hemp A, Ohlemüller R (2011) A global comparative analysis of elevational species richness patterns of ferns. Glob Ecol Biogeogr 20:868–880.  https://doi.org/10.1111/j.1466-8238.2011.00653.x CrossRefGoogle Scholar
  32. Kreutz C, Athayde Filho FP, Sanchez M (2015) Spatial and seasonal variation in the species richness and abundance of ferns and lycophytes in gallery forests of Cerrado in Central Brazil. Revista Brasileira de Botânica (Impresso) 39:315–326.  https://doi.org/10.1007/s40415-015-0236-9 CrossRefGoogle Scholar
  33. Magurran EA (1988) Ecological diversity and its measurement, 2ed. Princeton University Press, PrincetonCrossRefGoogle Scholar
  34. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  35. Mallmann IT, Schmitt JL (2014) Riqueza e composição florística da comunidade de samambaias na mata ciliar do Rio Cadeia, Rio Grande do Sul, Brasil. Ciência Florestal 24:97–109.  https://doi.org/10.5902/1980509813327 CrossRefGoogle Scholar
  36. Mallmann IT, Rocha LD, Schmitt JL (2013) Padrão de distribuição de quatro espécies de samambaias em três fragmentos de mata ciliar do rio Cadeia, RS, Brasil. Revista Brasileira de Biociências 11:139–144Google Scholar
  37. Mallmann IT, Silva VL, Schmitt JL (2016) Estrutura comunitária de samambaias em mata ciliar: avaliação em gradiente de antropização. Revista Ambiente & Água 11:110–124.  https://doi.org/10.4136/ambi-agua.1717 CrossRefGoogle Scholar
  38. Martinelli G, Moraes MA (2013) Livro vermelho da Flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  39. McGeoch M (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201.  https://doi.org/10.1111/j.1469-185X.1997.tb00029.x CrossRefGoogle Scholar
  40. Miguez FA, Kreutz C, Athayde Filho FP (2013) Samambaias e licófitas em quatro matas de galeria do município de Nova Xavantina, Mato Grosso, Brasil. Pesquisas Botânica 64:243–258Google Scholar
  41. Moran RC (2008) Diversity, biogeography and floristics. In: Ranker TA, Haufer CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 367–394CrossRefGoogle Scholar
  42. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York, p 24Google Scholar
  43. Mynssen CM, Windisch PG (2004) Pteridófitas da Reserva Rio das Pedras, Mangaratiba, RJ, Brasil. Rodriguésia 55:125–156.  https://doi.org/10.1590/2175-78602004558508 CrossRefGoogle Scholar
  44. Padoin TOH, Graeff V, Silva VL, Schmitt JL (2015) Florística e aspectos ecológicos das samambaias e licófitas da mata ciliar de um afluente do rio Rolante no sul do Brasil. Pesquisas Botânica 68:335–348Google Scholar
  45. Palma CB, Jarenkow JA (2008) Estrutura de uma formação herbácea de dunas frontais no litoral norte do Rio Grande do Sul, Brasil. Biociências 16:114–124Google Scholar
  46. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644.  https://doi.org/10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  47. Pereira AFN, Silva IAA, Santiago ICL, Barros IC (2014) Efeito de borda sobre a comunidade de samambaias em fragmento de Floresta Atlântica (Bonito, Pernambuco, Brasil). Interciência 39:281–287Google Scholar
  48. Ponce M (2007) Sinopsis de las Thelypteridaceae de Brasil central y Paraguay. Hoehnea 34:283–333.  https://doi.org/10.1590/S2236-89062007000300003 CrossRefGoogle Scholar
  49. Ppg I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603.  https://doi.org/10.1111/jse.12229 CrossRefGoogle Scholar
  50. Prado J, Sylvestre L (2017) Samambaias e Licófitas in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/listaBrasil/ConsultaPublicaUC/ConsultaPublicaC. Accessed 17 May 2018
  51. Prado J, Sylvestre LS, Labiak PH, Windisch PG, Salino A, Barros ICL, Hirai TEA, Santiago ACP, Kieling-Rubio MA, Pereira AF, Øllgaard B, Ramos CGV, Dittrich V, Mynssen CM, Schwartsburd PB, Condack JP, Pereira JBS (2015) Diversity of ferns and lycophytes in Brazil. Rodriguésia 66:1073–1083.  https://doi.org/10.1590/2175-7860201566410 CrossRefGoogle Scholar
  52. Rocha-Uriartt L, Becker DFP, Graeff V, Koch NM, Schmitt JL (2016) Functional patterns and species diversity of epiphytic vascular spore-producing plants in riparian forests with different vegetation structure from southern Brazil. Plant Ecol Evol 149:261–271.  https://doi.org/10.5091/plecevo.2016.1234 CrossRefGoogle Scholar
  53. Rodrigues RR, Gandolfi S (2000) Conceitos, tendências e ações para a recuperação de florestas ciliares. In: Rodrigues RR, Leitão FHF (Org.). Matas Ciliares: conservação e recuperação. Edusp: FAPESP, São Paulo, pp 233–247Google Scholar
  54. Rodrigues RR, Nave A (2000) Heterogeneidade florística das matas ciliares. In: Rodrigues RR, Leitão FHF (Org.). Matas Ciliares: conservação e recuperação. Edusp: FAPESP, São Paulo, pp 45–71Google Scholar
  55. Santos AV, Pertovt LE, Silva IM, Wolh COG (2007) Utilização de ferramentas de geoprocessamento para mapeamento de aptidão de uso do solo na região do arroio Feitoria no município de Ivoti/RS. In: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, INPE, pp 3105–3107Google Scholar
  56. Sarmento EC, Weber E, Hasenack H (2001) Avaliação da cobertura vegetal na microbacia Feitoria/Cadeia utilizando técnicas de geoprocessamento. http://www.ecologia.ufrgs.br/labgeo/artigos/cadeia.pdf. Accessed 22 June 2018
  57. Becker DFP, Rocha-Uriartt L, Junges F, Graeff V, Schmitt, JL (2014) Diagnóstico florístico e fitossociológico de samambaias e licófitas epifíticas em mata ciliar do Rio dos Sinos, RS, Brasil. In: Livro de Destaques da Feira de Iniciação Científica 2013: ciência, tecnologia e inovação, 1 edn. Editora Feevale, Novo Hamburgo, pp 21–31Google Scholar
  58. Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge, pp 61–110CrossRefGoogle Scholar
  59. Silva VL, Schmitt JL (2015) The effects of fragmentation on Araucaria forest: analysis of the fern and lycophyte communities at sites subject to different edge conditions. Acta Bot Bras 29:223–230.  https://doi.org/10.1590/0102-33062014abb3760 CrossRefGoogle Scholar
  60. Simabukuro EA, Esteves LM, Felippe GM (1994) Lista de pteridófitas da mata ciliar da Reserva Biológica de Mongi Guaçu, São Paulo. Insula 23:91–98Google Scholar
  61. Tockner K, Schiemer F, Baumgartner C, Kum G, Weigand E, Zweimuller I, Ward JV (1999) The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system. Regul Rivers Res Manag 15:245–258.  https://doi.org/10.1002/(SICI)1099-1646 CrossRefGoogle Scholar
  62. Windisch PG (1992) Pteridófitas da Região Norte-Ocidental do Estado de São Paulo—Guia para excursões, 2ª edn. Universidade Estadual Paulista. Campos de São José do Rio Preto, 110 pGoogle Scholar
  63. Windisch PG (1996) Towards assaying biodiversity in Brazilian pteridophytes. In: Bicudo CEM, Menezes N (eds) Biodiversity in Brazil: a first approach. CNPq, São Paulo, pp 109–117Google Scholar
  64. Wolf PG, Schneider H, Ranker T (2001) Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? J Biogeogr 28:263–270.  https://doi.org/10.1046/j.1365-2699.2001.00531.x CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Qualidade AmbientalUniversidade FeevaleNovo HamburgoBrazil
  2. 2.Laboratório de AcarologiaUniversidade do Vale do Taquari - UNIVATESLajeadoBrazil

Personalised recommendations