Advertisement

Sporogenesis and gametophytes development in Datura stramonium L. (Solanaceae)

  • Zohreh Shirkhani
  • Abdolkarim Chehregani RadEmail author
  • Mansour Gholami
Original Article
  • 36 Downloads

Abstract

Datura stramonium L., belonging to Solanaceae, is a medicinal plant with bioremediation potency that has variable characters and problematic taxonomy. The present study provides additional information on embryological characters in the D. stramonium that can provide useful information about the taxonomic of this species. The information is important for understanding the sexual reproduction process of this medicinal plant and also its phylogenetic position. The embryological properties, including sporogenesis and gametophyte development, of D. stramonium were examined by light, stereo, fluorescence and scanning electron microscopes. Results showed that each flower contained 5–6 tetrasporangiated stamens. The microsporogenesis and male gametogenesis characters of D. stramonium included dicotyledonous-type of anther wall formation, bi-nucleated and secretory tapetal cells, simultaneous cytokinesis in pollen mother cells, tetrahedral and tetragonal microspore tetrads and two-celled mature pollen grains. Ovary is formed by two carpels and contained numerous ovules with axile placentation. The anatropous, tenuinucellate and unitegmic ovules contained three archesporial cells. Only a single chalazal megaspore of the linear tetrad is functional. Polygonum-type embryo sac development, the presence of an endothelium, fusion of three antipodal cells and then formation of embryo without fertilization and cellular endosperm formation are the most important features in D. stramonium. The present findings reveal valuable developmental features can be used to discriminate this medicinal and environmentally important species and its phylogenetic relationships within the family Solanaceae.

Keywords

Anther Embryo sac Ovule Pollen grain 

Notes

Acknowledgements

The authors would like to thank the research council of Bu-Ali Sina University, Hamedan, Iran. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions

ACR and MGH, as professors, designed the study. ZShH, as PhD student, performed the field work and laboratory determinations. All authors contributed to the writing of the manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors has any financial or other relationships that could lead to a conflict of interest.

References

  1. Berkov S, Zayed R, Doncheva T (2006) Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia 77:179–182CrossRefGoogle Scholar
  2. Bhaduri P (1936) Studies on the embryogeny of the Solanaceae. I. Bot Gaz 98:283–295CrossRefGoogle Scholar
  3. Bonner LJ, Dickinson H (1989) Anther dehiscence in Lycopersicon esculentum Mill. I. Structural aspects. New Phytol 113:97–115CrossRefGoogle Scholar
  4. Bye R, Sosa V (2013) Molecular phylogeny of the jimsonweed genus Datura (Solanaceae). Syst Bot 38:818–829CrossRefGoogle Scholar
  5. Carrizo-García C (1998) Sobre_el androceo y el gineceo en la tribu Datureae (Solanaceae) y su implicancia taxonomica. Kurtziana 26:33–53Google Scholar
  6. Carrizo-García C (2002a) Anther wall formation in Solanaceae species. Ann Bot 90:701–706CrossRefGoogle Scholar
  7. Carrizo-García C (2002b) An approach to the diversity of endothecial thickenings in Solanaceae. Flora 197:214–223CrossRefGoogle Scholar
  8. Carrizo-García C (2003) Combination of sequences of cell divisions in the anther wall formation in Solanaceae species. Flora 198:243–246CrossRefGoogle Scholar
  9. Chehregani A, Ramezani H (2016) The study of anther and pollen developmental stages in Petunia hybrida juss. IJBP 29:95–105Google Scholar
  10. Chehregani A, Majde A, Moin M, Gholami M, Shariatzadeh MA, Nassiri H (2004) Increasing allergy potency of Zinnia pollen grains in polluted areas. Ecotoxicol Environ Saf 58:267–272CrossRefGoogle Scholar
  11. Chehregani A, Malayeri B, Yousefi N (2009) Developmental stages of ovule and megagametophyte in Chenopodium botrys L. (Chenopodiaceae). Turk J Bot 33:75–81Google Scholar
  12. Circosta C, Pasquale AD, Occhiuto F, Ragusa S, Tumino G (1985) Morphological characterization of the genus Datura: section Stramonium. Int J Crude Drug Res 23:191–207CrossRefGoogle Scholar
  13. Davis GL (1966) Systematic embryology of the angiosperms. JWS, San DiegoGoogle Scholar
  14. De-Araujo MJ, Cocucci A (1997) The ovules of Relbunium hypocarpium in the context of the Rubiaceae. Kurtziana 25:141–150Google Scholar
  15. Debnath T (2017) Newer insights into the pharmacological activities of Datura stramonium Linn. IAJPS 7:441–444Google Scholar
  16. Dharamadhaj P, Prakash N (1978) Development of the anther and ovule in Capsicum L. Aust J Bot 26:433–439CrossRefGoogle Scholar
  17. Endress PK (1996) Diversity and evolutionary trends in angiosperm anthers. University of Cambridge, CambridgeGoogle Scholar
  18. Fornoni J, Núñez-Farfán J (2000) Evolutionary ecology of Datura stramonium: genetic variation and costs for tolerance to defoliation. Evolution 54:789–797CrossRefGoogle Scholar
  19. Genc AC, Unal M (2017) Flower ontogeny and reproductive biology of Salvia viridis L. Pak J Bot 49:891–896Google Scholar
  20. Ghimire B, Heo K (2012) Embryology of Withania somnifera (L.) duna (Solanaceae). Acta Biol Crac Ser Bot 54:69–78Google Scholar
  21. Goodspeed TH (1947) Maturation of the gametes and fertilization in Nicotiana. Madrono 9:110–120Google Scholar
  22. Gordon E, McCandless E (1973) Ultrastructure and histochemistry of Chondrus crispus Stackhouse. Nova Scotian Inst Sci Proc 27:111–133Google Scholar
  23. Govil C (1980) Embryo sac development in Solanum tuberosum var. Jyoti Gola. Act Bot Ind 8:263–264Google Scholar
  24. Jarald EE, Jarald SE (2007) Textbook of pharmacognosy and phytochemistry. CBS Publisher and Distributers, New DelhiGoogle Scholar
  25. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company Inc, London, p 530pGoogle Scholar
  26. Johri BM (2012) Embryology of angiosperms. Springer, BerlinGoogle Scholar
  27. Kopcin J, Lotocka B, Kowalczyk K, Kobryn J (2004) Seed development in Solanum muricatum Aiton. Acta Biol Crac Ser Bot 46:121–132Google Scholar
  28. Liscovsky IJ, Cosa MT, Barboza GE (2009) Flower vascularisation in Solanaceae: a particular pattern in Metternichia JG Mikan. Adansonia 31:413–425CrossRefGoogle Scholar
  29. Maheswari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New YorkGoogle Scholar
  30. Mohan KK (1966) The ovule and embryo sac development in Browallia demissa L. Proc Plant Sci 64:26–31Google Scholar
  31. Mohan RH, Kamini I (1965) Embryology and fruit development in Withania somnifera Dunal. Phytomorph 14:574–587Google Scholar
  32. O’brien T, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  33. Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. Solanaceae IV 1:1–137Google Scholar
  34. O’Neal CE (1920) Microsporogenesis in Datura stramonium. Bull Torrey Bot Club 47:231–241CrossRefGoogle Scholar
  35. Parashar G, Singh V (1986) Development of the gynoecium in Solanaceae. Phytomorph 36:219–227Google Scholar
  36. Peterson R, Slovin JP, Chen C (2010) A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Plant Biol 1:66–69CrossRefGoogle Scholar
  37. Rembert DH Jr (1969) Comparative megasporogenesis in Caesalpiniaceae. Bot Gaz 130:47–52CrossRefGoogle Scholar
  38. Rembert D (1972) Phylogenetic significance of megaspore tetrad patterns in Leguminales. Phytomorph 21:1–9Google Scholar
  39. Rietsema J, Blondel B, Satina S, Blakeslee A (1955) Studies on ovule and embryo growth in Datura. I. A growth analysis. Am J Bot 42:449–455CrossRefGoogle Scholar
  40. Rodriguez I (2000) Flower anatomy and morphology of Exodeconus maritimus (Solanaceae, Solaneae) and Nicandra physalodes (Solanaceae, Nicandreae): importance for their systematic relationships. Adansonia 22:187–199Google Scholar
  41. Satina S (1945) Periclinal chimeras in Datura in relation to the development and structure of the ovule. Am J Bot 32:72–81CrossRefGoogle Scholar
  42. Sharma R, Singh D (1987) Development of seed coat in Datura. Geobios New Rep 6:157–159Google Scholar
  43. Soni P, Siddiqui AA, Dwivedi J, Soni V (2012) Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview. Asian Pac J Trop Biomed 2:1002–1008CrossRefGoogle Scholar
  44. Souèges R (1920) Embryogenie des Solanacees: Developpement de l’embryon chez les Nicotiana. 170Google Scholar
  45. Stace C (1997) New flora of the British Isles. Cambridge University Press, CambridgeGoogle Scholar
  46. Tanaomi N, Jonoubi P, Chehregani Rad A, Majd A, Ranjbar M (2016) Embryology of Onobrychis persica Sirj. and Rech. f. (Fabaceae) and its systematic implications. Caryologia 69:256–266CrossRefGoogle Scholar
  47. Tobe H (1989) The embryology of angiosperms: its broad application to the systematic and evolutionary study. J Plant R 102:351–367Google Scholar
  48. Vardar F (2013) Developmental and cytochemical features of female gametophyte in endemic Lathyrus undulatus (Fabaceae). Int J Agric Biol 15:135–139Google Scholar
  49. Villari R, Messina R (1996) Ovule and gametophyte development in Nicotiana glauca Graham (Solanaceae). Plant Biosyst 130:801–809Google Scholar
  50. Von Teichman I, Van Wyk AE (1991) Trends in the evolution of dicotyledonous seeds based on character associations, with special reference to pachychalazy and recalcitrance. Bot J Linn Soc 105:211–237CrossRefGoogle Scholar
  51. Wallis T, Rohatgi S (1952) The structure of the flowers of Datura stramonium L. and D. Tatula L. J Pharm Pharmacol 4:243–258CrossRefGoogle Scholar
  52. Young WJ (1922) Potato ovules with two embryo sacs. Am J Bot 9:213–214CrossRefGoogle Scholar
  53. Yurukova-Grancharova P, Yankova-Tsvetkova E, Baldjiev G, Barragan MC (2011) Reproductive biology of Atropa belladonna: embryological features, pollen and seed viability. Phytol Balcan 17:101–112Google Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  • Zohreh Shirkhani
    • 1
  • Abdolkarim Chehregani Rad
    • 1
    Email author
  • Mansour Gholami
    • 2
  1. 1.Laboratory of Plant Cell Biology, Department of BiologyBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Horticultural SciencesBu-Ali Sina UniversityHamedanIran

Personalised recommendations