Brazilian Journal of Botany

, Volume 41, Issue 4, pp 817–823 | Cite as

Plant species richness record in Brazilian Pampa grasslands and implications

  • Luciana da Silva MenezesEmail author
  • Cleusa Vogel Ely
  • Dióber Borges Lucas
  • Graziela Har Minervini Silva
  • Ilsi Iob Boldrini
  • Gerhard Ernst Overbeck
Original Article


Species richness remains one of the most valuable type of information for biodiversity conservation. Here, we report a plant richness record in the Brazilian Pampa. We found 56 vascular plant species in a single plot of 1 × 1 m in a privately owned grazed grassland in a region with shallow soils. This number is considerably higher than common species numbers in similar surveys and highlights the high plant diversity in South Brazilian grasslands. We take our record as an opportunity to reflect on some issues of high importance if we wish to reach conservation goals: much of the biodiversity is inside private lands, and these should be more in the focus of conservation efforts; field research, especially quantitative sampling, continues to be essential to improve knowledge on biodiversity and its distribution patterns; training biologists to be able to carry out biodiversity assessments and to interpret the results should be a key issue for universities. We hope that the communication of this record will encourage new scientific discoveries and raise social interest about the conservation of grasslands in South Brazil.


Biodiversity Campos Sulinos Conservation Field-based research 



Our work was supported by MCTIC and CNPq within the Research Program on Biodiversity (PPBio), network Campos Sulinos (Grant 457447/2012-5). We thank Eduardo Vélez for support and landowners for allowing the research. The two last authors received productivity grants from the National Council of Technological and Scientific Development (CNPq). We thank Valério De Patta Pillar for comments on the manuscript. LSM was supported by CAPES.

Author contributions

LSM, CVE, DBL, GHMS conducted fieldwork, GEO lead the research project, IOB identified plant species, and all authors wrote and reviewed the manuscript.

Supplementary material

40415_2018_492_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Alvares CA, Stape JL, Sentelhas PC, Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  2. Apg IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
  3. Arsanjani JJ, Tayyebi A, Vaz E (2016) GlobeLand30 as an alternative fine-scale global land cover map: challenges, possibilities, and implications for developing countries. Habitat Int 55:25–31CrossRefGoogle Scholar
  4. Brandão T, Trevisan R, Both R (2008) Unidades de Conservação e os Campos do Rio Grande do Sul. Rev Bras Biocienc 5:843–845Google Scholar
  5. Carvalho PCF, Batello C (2009) Access to land, livestock production and ecosystem conservation in the Brazilian Campos biome: the natural grasslands dilemma. Livest Sci 120:158–162CrossRefGoogle Scholar
  6. Dengler J, Bruelheide H, Purschke O et al (2014) sPlot: the new global vegetation-plot database for addressing trait-environment relationships across the world’s biomes. In: Mucina L, Price JN, Kalwij JM (eds) Biodiversity and vegetation: patterns, processes, conservation. Kwongan Foundation, Perth, p 90Google Scholar
  7. FAO (2009) Harmonized world soil database. Food and Agriculture Organization, p 43. Accessed 18 April 2018
  8. Fernandes GW, Vale MM, Overbeck GO et al (2017) Dismantling Brazil’s science threatens global biodiversity heritage. PECON 15:239–243Google Scholar
  9. Ferreira PMA, Müller SC, Boldrini II, Eggers L (2010) Floristic and vegetation structure of a granitic grassland in Southern Brazil. Braz J Bot 33:21–36CrossRefGoogle Scholar
  10. Fuhlendorf SD, Engle DM (2001) Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns. Bioscience 51:625–632CrossRefGoogle Scholar
  11. Hasenack H, Cordeiro JLP (2006) Mapeamento da cobertura vegetal do Bioma Pampa. Accessed 30 Sept 2016
  12. Helm A, Kalamees R, Zobel M (2014) Vegetation patterns and their underlying processes: Where are we now? J Veg Sci 25:1113–1116CrossRefGoogle Scholar
  13. IBGE (2004) Mapa da vegetação do Brasil e Mapa de Biomas do Brasil. Accessed 24 April 2018
  14. IBGE (2007) Manuais Técnicos em Geociências número 4 Manual Técnico de Pedologia. Ministério do Planejamento, Orçamento e Gestão, Rio de Janeiro, p 316Google Scholar
  15. IUCN Standards and Petitions Subcommittee (2017) Guidelines for using the IUCN red list categories and criteria. Version 13, prepared by the Standards and Petitions Subcommittee. Accessed 6 Oct 2017
  16. Kamal S, Grodzińska-Jurczak M, Brown G (2014) Conservation on private land: a review of global strategies with a proposed classification system. J Environ Plan Manag 58:576–597CrossRefGoogle Scholar
  17. Kattge J, Díaz S, Lavorel S et al (2011) TRY: a global database of plant traits. Glob Change Biol 17:2905–2935CrossRefGoogle Scholar
  18. Lewinsohn TM, Attayde JL, Fonseca CR et al (2015) Ecological literacy and beyond: problem-based learning for future professionals. Ambio 44:154–162CrossRefGoogle Scholar
  19. Magnusson WE, Lima AP, Luizão R et al (2005) RAPELD: a modification of the Gentry Method for biodiversity surveys in long-term ecological research sites. Biota Neotrop 5:19–24CrossRefGoogle Scholar
  20. Magnusson WE, Bergallo HG, Cerqueira R et al (2016) O programa de pesquisa em biodiversidade. In: Peixoto AL, Pujol-Luz JR, Brito MA (eds) Conhecendo a Biodiversidade. Ministério da Ciência, Tecnologia, Inovações e Comunicações, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Programa de Pesquisas em Biodiversidade, Brasília, pp 15–33Google Scholar
  21. McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Change Biol 19:1347–1357CrossRefGoogle Scholar
  22. Menezes LS, Müller SC, Overbeck GE (2015) Floristic and structural patterns in South Brazilian coastal grasslands. An Acad Bras Cienc 87:2081–2090CrossRefGoogle Scholar
  23. Mora C, Sale P (2011) Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Mar Ecol Prog Ser 434:251–266CrossRefGoogle Scholar
  24. Nabinger C, Ferreira ET, Freitas AK, Carvalho PCF, Sant’anna DM et al (2009) Produção animal com base no campo nativo: aplicações de resultados de pesquisa. In: Pillar VD, Müller SC, Castilhos ZMS, Jacques AVA (eds) Campos Sulinos: Conservação e Uso Sustentável da Biodiversidade. Ministério do Meio Ambiente, Brasília, pp 175–198Google Scholar
  25. Overbeck GE, Müller SC, Fidelis A et al (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol 9:101–116CrossRefGoogle Scholar
  26. Overbeck GE, Vélez EM, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460CrossRefGoogle Scholar
  27. Overbeck GE, Ferreira PMA, Pillar VD et al (2016) Conservation of mosaics calls for a perspective that considers all types of mosaic-patches. Reply to: Luza, A.L. Nat Conserv 14:152–154CrossRefGoogle Scholar
  28. Overbeck GE, Bergallo HG, Grelle CEV, Akama A, Bravo F, Colli GR, Magnusson WE, Tomas WM, Fernandes GW (2018a) Global biodiversity threatened by science budget cuts in Brazil. Bioscience 68:11–12CrossRefGoogle Scholar
  29. Overbeck GE, Scasta JD, Furquim FF et al (2018b) The South Brazilian grasslands: A South American tallgrass prairie? Parallels and implications of fire dependency. Perspect Ecol Conserv 16:24–30CrossRefGoogle Scholar
  30. Parera A, Paullier I, Weyland F (2014) Índice de Contribución a la Conservación de Pastizales Naturales del Cono Sur: Una herramienta para incentivar a los productores rurales. Aves Uruguay, Angentina, p 181Google Scholar
  31. Parr CL, Lehmann CER, Bond WJ, Wa H, Andersen AN (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol 29:205–213CrossRefGoogle Scholar
  32. Peixoto AL, Pujol-Luz JR, Brito MA (2016) Conhecendo a biodiversidade. Ministério da Ciência, Tecnologia, Inovações e Comunicações, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Programa de Pesquisas em Biodiversidade, Brasília, p 196Google Scholar
  33. Pillar VD, Vélez EM (2010) Extinção dos Campos Sulinos em Unidades de Conservação: um Fenômeno Natural ou um Problema Ético? PECON 8:84–86Google Scholar
  34. Pillar VD, Müller SC, Castilhos Z, Jacques AVA (2009) Campos Sulinos: conservação e uso sustentável da biodiversidade. MMA, Brasília, p 408Google Scholar
  35. Prado JL, Martinez-Maza C, Alberdi MT (2015) Megafauna extinction in South America: a new chronology for the Argentine Pampas. Palaeogeogr Palaeoclimatol Palaeoecol 425:41–49CrossRefGoogle Scholar
  36. Veldman JW, Overbeck GE, Negreiros D et al (2015) Tyranny of trees in grassy biomes. Science 347:484–485CrossRefGoogle Scholar
  37. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2018

Authors and Affiliations

  • Luciana da Silva Menezes
    • 1
    Email author
  • Cleusa Vogel Ely
    • 1
  • Dióber Borges Lucas
    • 1
  • Graziela Har Minervini Silva
    • 1
  • Ilsi Iob Boldrini
    • 1
    • 2
  • Gerhard Ernst Overbeck
    • 1
    • 2
  1. 1.Programa de Pós-graduação em BotânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de Botânica, Programa de Pós-graduação em BotânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations