Advertisement

Abiotic soil attributes and their relation to morphological root characteristics and mycorrhizal colonization of grasses

  • Heloisa de Cesaro Krzyzanski
  • Rosilaine Carrenho
  • Marcelo Alessandro Araujo
Original Article
  • 28 Downloads

Abstract

This study evaluated soil properties and their relation to root production and arbuscular mycorrhizal fungi (AMF) colonization of grasses. Soil samples were collected from surface layers to determine the volume, total length, specific length, diameter and dry mass of roots, and grain size and chemical properties of the soil. Sampled roots were used to evaluate mycorrhizal colonization and 50 g of soil to extract spores. A second sampling was conducted to measure soil penetration resistance, macroporosity, microporosity, total porosity and bulk density. Of the morphological traits of the roots, only specific length and diameter were significantly related to soil physical attributes. Root volume was positively related with P, Ca, Mg and organic matter. Almost all of the mycorrhizal variables had no correlation with the physical properties of the soil; only total colonization was positively related to soil penetration resistance (to 0.10 m). AMF had a negative correlation between root colonization and total length of the roots, while the number of spores was inversely related to roots finer than 0.5 mm in diameter and positively related to roots larger than 0.5 mm in diameter. The data were highly variable, indicating the influence of environmental heterogeneity on the investigated characteristics.

Keywords

Density Glomeromycota Grass species Penetration resistance Porosity 

Notes

Acknowledgements

We thank the biologist Kazue Kawakita, from the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura at the Universidade Estadual de Maringá, for confirming the taxonomic identities of the plants, and Capes for the study grant awarded to the first author.

Author Contribution

H.C.K participated in all stages of the work, including the collection and organization of material, analyses of plant and soil variables and writing the article. R.C participated in data collection, organization of material, statistical analyses and writing the article. M.A.A participated in collecting soil data, analyses of soil variables and writing the article.

References

  1. Albuquerque JA, Mafra AL, Fontoura SMV, Bayer C, Passos JFM (2005) Calagem, em um latossolo bruno alumínico. “Seção VI - manejo e conservação do solo e da água”. Rev Bras Cienc Solo 29:963–975CrossRefGoogle Scholar
  2. Araujo ASF, Monteiro RTR (2007) Indicadores biológicos de qualidade do solo. Biosci J 23:66–75Google Scholar
  3. Araujo MA, Tormena CA, Silva AD (2004) Propriedades físicas de um Latossolo Vermelho distrófico cultivado e sob mata nativa. Rev Bras Cienc Solo 28:337–345.  https://doi.org/10.1590/S0100-06832004000200012 CrossRefGoogle Scholar
  4. Ardestani NK, Zare-Maivan H, Ghanati F (2011) Effect of different concentrations of potassium and magnesium on mycorrhizal colonization of maize in pot culture. Afr J Biotechnol 10:16548–16550.  https://doi.org/10.5897/AJB11.556 Google Scholar
  5. Baligar VC, Nash VE, Hare ML, Price JA (1975) Soybean root anatomy as influenced by soil bulk density. Agron J 67:842–844.  https://doi.org/10.2134/agronj1975.00021962006700060032x CrossRefGoogle Scholar
  6. Balota EL, Colozzi-Filho A, Andrade DS, Hungria M (1998) Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucessão de culturas. Rev Bras Cienc Solo 22:641–649CrossRefGoogle Scholar
  7. Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol Biochem 42:2316–2324.  https://doi.org/10.1016/j.soilbio.2010.09.008 CrossRefGoogle Scholar
  8. Beltrame LFS, Gondim LAP, Taylor JC (1981) Estrutura e compactação na permeabilidade de solos do Rio Grande do Sul. Rev Bras Cienc Solo 5:145–149Google Scholar
  9. Benghough AG, Mullins CE (1990) Mechanical impedance to root growth: a review of experimental techniques and root growth responses. Eur J Soil Sci 41:341–358.  https://doi.org/10.1111/j.1365-2389.1990.tb00070.x CrossRefGoogle Scholar
  10. Bengough AG, Bransby MF, Hans J, Mckenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions: growth dynamics from field to cell. J Exp Bot 57:437–447.  https://doi.org/10.1093/jxb/erj003 CrossRefPubMedGoogle Scholar
  11. Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68.  https://doi.org/10.1093/jxb/erq350 CrossRefPubMedGoogle Scholar
  12. Berbara RL, Souza FA, Fonseca HMAC (2006) Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS (ed) Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 53–85Google Scholar
  13. Bergamin AC, Tadeu Vitorino AC, Franchini JC, Souza CMAD, Souza FRD (2010) Compactação em um Latossolo Vermelho distroférrico e suas relações com o crescimento radicular do milho. Rev Bras Cienc Solo 34:681–692.  https://doi.org/10.1590/S0100-06832010000300009 CrossRefGoogle Scholar
  14. Beutler AN, Centurion JF (2003) Efeito do conteúdo de água e da compactação do solo na produção de soja. Pesqui Agropecu Bras 38:849–856CrossRefGoogle Scholar
  15. Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. R C Suelo Nutr Veg 8:9–18.  https://doi.org/10.4067/S0718-27912008000200003 CrossRefGoogle Scholar
  16. Brady NC, Weil RR (2008) Upper Saddle River The nature and properties of soils. Prentice Hall, New JerseyGoogle Scholar
  17. Braida JA, Reichert JM, Veiga M, Reinert DJ (2006) Resíduos vegetais na superfície e carbono orgânico do solo e suas relações com a densidade máxima obtida no ensaio de Proctor. Rev Bras Cienc Solo 30:605–614.  https://doi.org/10.1590/S0100-06832006000400001 CrossRefGoogle Scholar
  18. Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi—an X-ray microanalytical study. Mycol Res 103:31–39CrossRefGoogle Scholar
  19. Calonego JC, Gomes TC, Santos CH, Tiritan CS (2011) Desenvolvimento de plantas de cobertura em solo compactado. Biosci J 27:289–296Google Scholar
  20. Camargo OA, Alleoni LRF (1997) Compactação do solo e o desenvolvimento de plantas. Esalq, PiracicabaGoogle Scholar
  21. Carneiro MAC, Souza ED, Reis EF, Pereira HS, Azevedo WR (2009) Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Rev Bras Cienc Solo 33:147–157.  https://doi.org/10.1590/S0100-06832009000100016 CrossRefGoogle Scholar
  22. Dias-Junior MS (2000) Compactação do solo. In: Novais RF, Alvarez VVH, Schaefer CEGR (eds) Tópicos em ciência do solo, 1st edn. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 55–94Google Scholar
  23. Doran JW, Sarrantonio M, Liebig M (1996) Soil health and sustainability. Adv Agron 56:1–54CrossRefGoogle Scholar
  24. Eavis BW (1972) Soil physical conditions affecting seedling root growth. I. Mechanical impedance, aeration and moisture availability as influenced by bulk density and moisture levels in a sandy loam soil. Plant Soil 36:613–622CrossRefGoogle Scholar
  25. Embrapa (2006) Sistema brasileiro de classificação de solos. Embrapa/SPI, Rio de JaneiroGoogle Scholar
  26. Embrapa Solos (1997) Manual de métodos de análise de solos. Embrapa/CNPS, Rio de JaneiroGoogle Scholar
  27. Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47:350–355CrossRefGoogle Scholar
  28. Foloni JSS, Calonego JC, Lima SD (2003) Efeito da compactação do solo no desenvolvimento aéreo e radicular de cultivares de milho. Pesqui Agropecu Bras 38:947–953.  https://doi.org/10.1590/S0100-204X2003000800007 CrossRefGoogle Scholar
  29. Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337.  https://doi.org/10.3389/fpls.2014.00337 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Genro-Junior SA, Reinert DJ, Reichert JM, Albuquerque JA (2009) Atributos físicos de um Latossolo vermelho e produtividade de culturas cultivadas em sucessão e rotação. Cienc Rural 39:65–73.  https://doi.org/10.1590/S0103-84782009000100011 CrossRefGoogle Scholar
  31. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244.  https://doi.org/10.1016/S0007-1536(63)80079-0 CrossRefGoogle Scholar
  32. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500.  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  33. Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Till Res 82:121–145.  https://doi.org/10.1016/j.still.2004.08.009 CrossRefGoogle Scholar
  34. Hanks RJ, Thorp FC (1956) Seedling emergence of wheat as related to soil moisture content, bulk density, oxygen diffusion rate, and crust strength. Soil Sci Am Proc 20:307–310.  https://doi.org/10.2136/sssaj1956.03615995002000030003x CrossRefGoogle Scholar
  35. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303.  https://doi.org/10.1111/j.1469-8137.2005.01512.x CrossRefPubMedGoogle Scholar
  36. Hurley BA, Tran HT, Marty NJ et al (2010) The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiol 153:1112–1122.  https://doi.org/10.1104/pp.110.153270 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Imhoff S, Silva AD, Tormena CA (2000) Aplicações da curva de resistência no controle da qualidade física de um solo sob pastagem. Pesqui Agropecu Bras 35:1493–1500.  https://doi.org/10.1590/S0100-204X2000000700025 CrossRefGoogle Scholar
  38. Ishaq M, Hassan A, Saeed M, Ibrahim M, Lal R (2001) Subsoil compaction effects on crops in Punjab, Pakistan: I. Soil physical properties and crop yield. Soil Till Res 59:57–65.  https://doi.org/10.1016/S0167-1987(00)00189-6 CrossRefGoogle Scholar
  39. Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 207–223Google Scholar
  40. Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis 48:692Google Scholar
  41. Johnson NC, Pfleger FL (1992) Vesicular-Arbuscular Mycorrhizae and Cultural Stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in Sustainable Agriculture. American Society of Agronomy, Madison, pp 71–99Google Scholar
  42. Kiehl EJ (1979) Manual de Edafologia: relação solo planta. Agronômica Ceres, São PauloGoogle Scholar
  43. Klute A (1982) Tillage effects on the hydraulic properties of soil: a review. In: Kral DM (ed) Predicting tillage effects on soil physical properties and processes, 1st edn. American Society of Agronomy Soil Science Society of America, Madison, pp 29–43Google Scholar
  44. Letey J (1985) Relationship between soil physical properties and crop production. In: Stewart BA (ed) Advances in soil science, 1st edn. Springer, New York, pp 277–294Google Scholar
  45. Manjunath A, Habte M (1991) Root morphological characteristics of host species having distinct mycorrhizal dependency. Can J Bot 69:671–676CrossRefGoogle Scholar
  46. Materechera SA, Alston AM, Kirby JM, Dexter AR (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 144:297–303.  https://doi.org/10.1007/BF00012888 CrossRefGoogle Scholar
  47. Medeiros RD, Soares AA, Guimarães RM (2005) Compactação do solo e manejo da água. I: efeitos sobre a absorção de N, P, K, massa seca de raízes e parte aérea de plantas de arroz. Cienc Agrotec 29:940–947.  https://doi.org/10.1590/S1413-70542005000500004 CrossRefGoogle Scholar
  48. Menge JA, Davis RM, Johnson ELV, Zentmyer GA (1978) Mycorrhizal fungi increase growth and reduce transplant injury in avocado. Calif Agric 32:6–7Google Scholar
  49. Mengel K, Kirkby E (2001) Principles of plant nutrition. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  50. Merotto A, Mundstock CM (1999) Wheat root growth as affected by soil strength. Rev Bras Cienc Solo 23:197–202.  https://doi.org/10.1590/s0100-06831999000200002 CrossRefGoogle Scholar
  51. Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290.  https://doi.org/10.1016/j.still.2008.10.015 CrossRefGoogle Scholar
  52. Morton JB, Bentivenga SP, Wheeler WW (1993) Germ plasm in the International Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528Google Scholar
  53. Muthukumar T, Sha L, Yang X, Cao M, Tang J, Zheng Z (2003) Distribution of roots and arbuscular mycorrhizal associations in tropical forest types of Xishuangbanna, southwest China. Appl Soil Ecol 22:241–253.  https://doi.org/10.1016/S0929-1393(02)00156-7 CrossRefGoogle Scholar
  54. Neumann G, Romheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130.  https://doi.org/10.1023/A:1004380832118 CrossRefGoogle Scholar
  55. Nobrega JCA, Lima JM, Curi N, Siqueira JO, Motta PEF (2001) Fosfato e micorriza na estabilidade de agregados em amostras de latossolos cultivados e não-cultivados. Pesqui Agropecu Bras 36:1425–1435.  https://doi.org/10.1590/S0100-204X2001001100014 CrossRefGoogle Scholar
  56. Paes JMV, Andreola F, Brito CH, Loures EG (1996) Decomposição da palha de café em três tipos de solo e sua influência sobre a CTC e o pH. Rev Ceres 43:674–683Google Scholar
  57. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  58. Prado RM (2008) Nutrição de plantas. Unesp, São PauloGoogle Scholar
  59. Raij B, Van Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico de Campinas, CampinasGoogle Scholar
  60. Ramos MLG, Konrad MLF, Silva DE et al (2012) Diversidade de fungos micorrízicos e colonização radicular, em forrageiras solteiras e em consórcio com milho. Biosci J 28:235–244Google Scholar
  61. Reeves DW (1995) Soil management under no-tillage: soil physical aspects. Pesqui Agropecu Bras 1:127–130Google Scholar
  62. Reinert DJ, Albuquerque JA, Reichert JM, Aita C, Andrada MMC (2008) Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Rev Bras Cienc Solo 32:1805–1816.  https://doi.org/10.1590/S0100-06832008000500002 CrossRefGoogle Scholar
  63. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53.  https://doi.org/10.1111/j.1469-8137.2006.01750.x CrossRefPubMedGoogle Scholar
  64. Rosolem CA, Vale LSR, Grassi Filho H, Moraes MH (1994) Sistema radicular e nutrição do milho em função da calagem e da compactação do solo. Rev Bras Cienc Solo 18:491–497Google Scholar
  65. Roth CH, Castro Filho CD, Medeiros GB (1991) Análise de fatores físicos e químicos relacionados com a agregação de um Latossolo Roxo distrófico. Rev Bras Cienc Solo 15:241–248Google Scholar
  66. Salton JC, Mielniczuk J, Bayer C et al (2008) Agregação e estabilidade de agregados do solo em sistemas agropecuários em Mato Grosso do Sul. Rev Bras Cienc Solo 32:11–21.  https://doi.org/10.1590/S0100-06832008000100002 CrossRefGoogle Scholar
  67. Santos C (2007) Estatística Descritiva - Manual de Auto-aprendizagem. Edições Sílabo, LisboaGoogle Scholar
  68. Silva IF, Mielniczuk J (1997) Ação do sistema radicular de plantas na formação e estabilização de agregados do solo. Rev Bras Cienc Solo 21:113–117Google Scholar
  69. Silva RH, Rosolem CA (2001) Crescimento radicular de espécies utilizadas como cobertura decorrente da compactação do solo. Rev Bras Cienc Solo 25:253–260.  https://doi.org/10.1590/S0100-06832001000200001 CrossRefGoogle Scholar
  70. Silva AP, Imhoff S, Kay BD (2004) Plant response to mechanical resistance and air-filled porosity of soils under conventional and no tillage system. Sci Agric 61:451–456.  https://doi.org/10.1590/S0103-90162004000400016 CrossRefGoogle Scholar
  71. Silva MG, Arf O, Sá ME, Buzetti S (2006) Rendimento do feijoeiro irrigado cultivado no inverno em sucessão de culturas, sob diferentes preparos do solo. Acta Sci Agron 28:433–439.  https://doi.org/10.4025/actasciagron.v28i3.971 Google Scholar
  72. Siqueira JO, Klauberg-Filho O (2000) Micorrizas arbusculares: a pesquisa brasileira em perspectiva. In: Alvarez VVH, Schaefer CEGR (eds) Novais RF. Tópicos em Ciência do Solo, Viçosa, pp 235–264Google Scholar
  73. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press Inc., OxfordGoogle Scholar
  74. Stone LF, Guimarães CM, Moreira JAA (2002) Compactação do solo na cultura do feijoeiro: I. nas propriedades físico-hídricas do solo. Rev Bras Eng Agric Ambient 6:213–218CrossRefGoogle Scholar
  75. Taylor HM, Roberson GM, Parker JJ Jr (1966) Soil strength-root penetration relations to medium to coarse-textured soil materials. Soil Sci 102:8–22CrossRefGoogle Scholar
  76. Tennant D (1975) A test of modified line intersect method estimating root length. J Ecol 63:995–1001.  https://doi.org/10.2307/2258617 CrossRefGoogle Scholar
  77. Tormena CA, Roloff G (1996) Dinâmica da resistência à penetração de um solo sob plantio direto. Rev Bras Cienc Solo 20:333–339Google Scholar
  78. Warncke DD, Barber SA (1972) Diffusion of zinc in soil. I. The influence of soil moisture. Soil Sci Soc Am Proc 36:39–42.  https://doi.org/10.2136/sssaj1972.03615995003600010008x CrossRefGoogle Scholar
  79. Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461.  https://doi.org/10.1111/j.1461-0248.2009.01303.x CrossRefPubMedGoogle Scholar
  80. Wu Q-S, He X-H, Cao M-Q, Zou Y-N, Wang S, Li Y (2013) Relationships between glomalin-related soil protein in water-stable aggregate fractions and aggregate stability in citrus rhizosphere. Int J Agric Biol 15:603–606Google Scholar

Copyright information

© Botanical Society of Sao Paulo 2018

Authors and Affiliations

  • Heloisa de Cesaro Krzyzanski
    • 1
  • Rosilaine Carrenho
    • 2
  • Marcelo Alessandro Araujo
    • 3
  1. 1.Doutoranda do Programa de Pós-Graduação em Biologia ComparadaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento de BiologiaUniversidade Estadual de MaringáMaringáBrazil
  3. 3.Universidade Estadual de MaringáCidade GaúchaBrazil

Personalised recommendations