Brazilian Journal of Botany

, Volume 40, Issue 1, pp 215–223 | Cite as

Bizarre Cecropia pachystachya (Urticaceae) hemiepiphytic growth on palms in the “Pantanal” wetland

Original Article

Abstract

In this study, we describe for the first time facultative hemiepiphytism in Cecropia pachystachya Trécul growing on palms in the “Pantanal” wetland of Brazil and investigate ecological factors associated with this unexpected phenomenon. We sampled C. pachystachya seeds lodged in palm stems and recorded the seed rain to low stems, high stems and to the ground below and away from palms. We also tested seed germination on soil and stem substrates and measured the chemical composition of both substrates. Compared to freestanding conspecifics, hemiepiphytes of C. pachystachya were rare and displayed wider trunks but similar height. All hemiepiphytes were fixed on low stems by aerial roots encircling the palms and coalesced branches rooted into the ground. Most palm stems contained C. pachystachya seeds but a few concentrated seeds massively. Dispersal of seeds was 15 times greater to lower than higher portions of stems, and seven times higher below palms than elsewhere. Germination rates of C. pachystachya seeds did not differ between soil and stem substrates. The clayey stem substrate presented more Zn, K, P, Ca, Mg and Al than the sandy soil, which in turn presented more Fe and Cu. The exceptional occurrence of C. pachystachya as a facultative hemiepiphyte in the “Pantanal” wetland results from massive seed rain to lower regions of palm stems, where germination, mechanical stability and access to nutrients are conducive to establishment and subsequent growth. However, the rarity of hemiepiphytism in C. pachystachya indicates that opportunities for successful establishment rely on a combination of uncertain spatiotemporal conditions.

Keywords

Aerial roots Attalea phalerata Bat dispersal Hemiepiphytes Soil composition 

Supplementary material

40415_2016_339_MOESM1_ESM.tif (2.3 mb)
Semicircular traps of PVC for sampling the frequency of Cecropia pachystachya seeds arriving on high stems (a), low stems (b) and the ground below canopy (c) of Attalea phalerata palms in the Pantanal wetland, Brazil (TIFF 2341 kb)

References

  1. Alho CJR, Camargo G, Fischer E (2011) Terrestrial and aquatic mammals of the Pantanal. Braz J Biol 71:297–310PubMedGoogle Scholar
  2. Almeida TIR, Penatti NC, Ferreira LG, Arantes AE, Amaral CH (2015) Principal component analysis applied to a time series of MODIS images: the spatio-temporal variability of the Pantanal wetland, Brazil. Wetl Ecol Manag 23:737–748CrossRefGoogle Scholar
  3. Anonymous (1997) Manual de métodos de análise de solo. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos, Rio de JaneiroGoogle Scholar
  4. Barlow PW (1986) Adventitious roots of whole plants: their forms, functions, and evolution. In: Jackson MB (ed) New root formation in plants and cuttings. Martinus Nijhoff Publishers, Dordrecht, pp 67–110CrossRefGoogle Scholar
  5. Batista CUN, Medri ME, Bianchini E, Medri C, Pimenta JA (2008) Tolerância à inundação de Cecropia pachystachya (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta Bot Bras 22:91–98CrossRefGoogle Scholar
  6. Benzing DH (1990) Vascular epiphytes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Berg CC, Akkermans RWAP, van Heusden ECH (1990) Cecropiaceae: Coussapoa and Pourouma, with an introduction to the family. Flora Neotrop Monogr 51:1–208Google Scholar
  8. Berg CC, Rosselli PF, Davidson DW (2005) Cecropia. Flora Neotrop 94:1–230Google Scholar
  9. Bernal R, Balslev H (1996) Strangulation of the palm Phytelephas seemannii by the pioneer tree Cecropia obtusifolia: the cost of efficient litter trapping. Ecotropica 2:177–184Google Scholar
  10. Corrêa CE, Fischer E, Santos FAM (2012) Seed banks on Attalea phalerata (Arecaceae) stems in the Pantanal wetland, Brazil. Ann Bot 109:729–734CrossRefPubMedGoogle Scholar
  11. Cunha NL, Fischer E, Lorenz-Lemke AP, Barrett SCH (2014) Floral variation and environmental heterogeneity in a tristylous clonal aquatic of the Pantanal wetlands of Brazil. Ann Bot 114:1637–1649CrossRefGoogle Scholar
  12. Dalling JW, Swaine MD, Garwood NC (1998) Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest. Ecology 79:564–578CrossRefGoogle Scholar
  13. Damasceno Júnior GA, Semir J, Santos FAM, Leitão Filho HF (2004) Tree mortality in a riparian forest at Rio Paraguai, Pantanal, Brazil, after an extreme flooding. Acta Bot Bras 18:839–846CrossRefGoogle Scholar
  14. Faxina C, Fischer E, Pott A (2015) Flora of inland Atlantic riparian forests in southwestern Brazil. Biota Neotrop 15:1–12. doi:10.1590/1676-06032015008313 CrossRefGoogle Scholar
  15. Fischer E, Santos FAM (2001) Demography, phenology and sex of Calophyllum brasiliense (Clusiaceae) trees in the Atlantic forest. J Trop Ecol 17:903–909CrossRefGoogle Scholar
  16. Gentry AH (1993) A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa. The University of Chicago, ChicagoGoogle Scholar
  17. Gonçalves F, Munin R, Costa P, Fischer E (2007) Feeding habits of Noctilio albiventris (Noctilionidae) bats in the Pantanal, Brazil. Acta Chiropterol 9:535–538CrossRefGoogle Scholar
  18. Guillon JM, Julliard R, Leturque H (2006) Evolution of habitat-dependent sex allocation in plants: superficially similar to, but intrinsically different from animals. J Evol Biol 19:500–512CrossRefPubMedGoogle Scholar
  19. Hao G, Sack L, Wang A, Cao K, Goldstein G (2010) Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct Ecol 24:731–740CrossRefGoogle Scholar
  20. Hao G, Goldstein G, Sack L, Holbrook NM, Liu Z, Wang A, Harrison RD, Su Z, Cao K (2011) Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy. Ecology 92:2117–2130CrossRefPubMedGoogle Scholar
  21. Harrison RD (2006) Mortality and recruitment of hemi-epiphytic figs in the canopy of a Bornean rain forest. J Trop Ecol 22:477–480CrossRefGoogle Scholar
  22. Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269CrossRefGoogle Scholar
  23. Jim CY (2014) Ecology and conservation of strangler figs in urban wall habitats. Urban Ecosyst 17:405–426CrossRefGoogle Scholar
  24. Kaufmann S, McKey DB, Hossaert-McKey M, Horvitz CC (1991) Adaptations for a two-phase seed dispersal system involving vertebrates and ants in a hemiepiphytic fig (Ficus microcarpa: Moraceae). Am J Bot 78:971–977CrossRefGoogle Scholar
  25. López-Acosta JC, Dirzo R (2015) Aspectos relevantes sobre la historia natural de las plantas hemiepífitas estranguladoras. Interciencia 40:190–197Google Scholar
  26. Marinho Filho JS (1992) Ecologia e história natural das interações entre palmeiras, epífitas e frugívoros na região do Pantanal Matogrossense. Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  27. Marques MCM, Fischer E (2009) Effect of bats on seed distribution and germination of Calophyllum brasiliense (Clusiaceae). Ecotropica 15:1–6Google Scholar
  28. Mourão GM, Calheiros DF, Oliveira MD, Padovani C, Fischer E, Tomas W, Campos Z (2013) Respostas ecológicas de longo prazo a variações plurianuais das enchentes do Pantanal. In: Tabarelli M, Rocha CFD, Romanowski HP, Rocha O, Lacerda LD (eds) PELD-CNPq: dez anos do Programa de Pesquisas Ecológicas de Longa Duração do Brasil: achados, lições e perspectivas. Editora Universitária da UFPE, Recife, pp 90–116Google Scholar
  29. Munin RL, Costa PC, Fischer E (2011) Differential ingestion of fig seeds by a Neotropical bat, Platyrrhinus lineatus. Mamm Biol 76:772–774CrossRefGoogle Scholar
  30. Munin RL, Fischer E, Gonçalves F (2012) Food habits and dietary overlap in a phyllostomid bat assemblage in the Pantanal of Brazil. Acta Chiropterol 14:195–204CrossRefGoogle Scholar
  31. Nadkarni NM, Haber WA (2009) Canopy seed banks as time capsules of biodiversity in pasture-remnant tree crowns. Conserv Biol 23:1117–1126CrossRefPubMedGoogle Scholar
  32. Nadkarni NM, Merwin MC, Nieder J (2001) Forest canopies, plant diversity. In: Levin SA (ed) Encyclopaedia of biodiversity 3. Academic Press, London, pp 27–40Google Scholar
  33. Pakeman RJ, Small JL, Torvell L (2012) Edaphic factors influence the longevity of seeds in the soil. Plant Ecol 21:57–65CrossRefGoogle Scholar
  34. Parolin P (2002) Life history and environment of Cecropia latiloba in Amazonian floodplains. Rev Biol Trop 50:531–545PubMedGoogle Scholar
  35. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of flood-tolerant trees in Amazonian floodplains. Ann Bot 105:129–139CrossRefPubMedGoogle Scholar
  36. Passos L, Oliveira PS (2002) Ants affect the distribution and performance of Clusia criuva seedlings, a primarily bird-dispersed rainforest tree. J Ecol 90:517–528CrossRefGoogle Scholar
  37. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  38. Pott A, Pott VJ (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária, BrasíliaGoogle Scholar
  39. Raphael MB, Chong KY, Yap VB, Tan HTW (2015) Comparing germination success and seedling traits between exotic and native pioneers: Cecropia pachystachya versus Macaranga gigantea. Plant Ecol 216:1019–1027CrossRefGoogle Scholar
  40. Soethe N, Lehmann J, Engels C (2006) Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant Soil 279:173–185CrossRefGoogle Scholar
  41. Sposito TC, Santos FAM (2001) Architectural patterns of eight Cecropia (Cecropiaceae) species of Brazil. Flora 196:215–226CrossRefGoogle Scholar
  42. Steiner F, Zoz T, Pinto Júnior AS, Castagnara DD, Dranski JAL (2012) Effects of aluminum on plant growth and nutrient uptake in young physic nut plants. Cienc Sem Agrar 33:1779–1788CrossRefGoogle Scholar
  43. Teixeira RC, Corrêa CE, Fischer E (2009) Frugivory by Artibeus jamaicensis (Phyllostomidae) bats in the Pantanal, Brazil. Stud Neotrop Fauna Environ 44:7–15CrossRefGoogle Scholar
  44. Wanek W, Arndt SK, Huber W, Popp M (2002) Nitrogen nutrition during ontogeny of hemiepiphytic Clusia species. Funct Plant Biol 29:733–740CrossRefGoogle Scholar
  45. Zotz G (2013) ‘Hemiepiphyte’: a confusing term and its history. Ann Bot 111:1015–1020CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2016

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  2. 2.Centro de Ciências Biológicas e da SaúdeUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations