Brazilian Journal of Botany

, Volume 39, Issue 2, pp 507–518 | Cite as

Direct and cross-recognition of lichenized Trebouxia Puymaly (Chlorophyta, Trebouxiophyceae) and Nostoc Vaucher ex Bornet (Cyanobacteria, Cyanophyceae) by their homologous and heterologous fungal lectins

  • Eva M. Díaz
  • Carmen Cutrona
  • Elena Sánchez-Elordi
  • María-Estrella Legaz
  • Carlos Vicente


In this study, we have used affinity chromatography to purify the lectins from a chlorolichen, Evernia prunastri (L.) Ach., and a cyanolichen, Peltigera canina (Ach.) Schard. These species secrete lectins that display arginase activity in addition to their role as recognition proteins. We found that fluorescently labeled lectins display efficient binding to their ligands on the cell wall. Binding was stronger when the lectin reacted with the producing (homologous) photobiont (alga or cyanobacteria) than with the nonproducing (heterologous) species used throughout the study. To address the specificity of lectin binding, we performed desorption experiments of cell-bound lectins with different hexoses. We found that Evernia lectin is only desorbed by galactose, consistent with its specific binding to a single polygalactosylated ligand. Conversely, Peltigera lectin is desorbed not only by galactose, but also by mannose. This indicates that Peltigera lectin recognizes not only α-d-galactose-containing ligands, but also ligands containing α-d-mannose moieties.


Arginase Chlorobiont Cyanobiont Lectin Specificity 



This work has been supported by a grant from the Ministerio de Ciencia e Innovación (Spain) BFU2009-11983. The authors thank Prof. Dr. Miguel Vicente-Manzanares for proofreading this manuscript.


  1. Aisaka K, Uwajima T, Terada O (1984) Kinetic properties of galactose oxidase from Gibberella fujikuroi. Agric Biol Chem 48:1425–1431Google Scholar
  2. Bergman B, Rai AN, Johanson C, Söderbäck E (1993) Cyanobacterial-plant symbioses. Symbiosis 14:61–81Google Scholar
  3. Bubrick P (1988) Effects of symbiosis on the photobionts. In: Galun M (ed) Handbook of lichenology, vol 2. CRC Press, Boca Raton, pp 130–133Google Scholar
  4. Bubrick P, Galun M (1980) Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Correlation between binding patterns and cell wall cytochemistry. Protoplasma 104:167–173CrossRefGoogle Scholar
  5. Caffaro SV, Mateos JL, Vicente C (1996) Changes in the activity of an enzymatic marker bound to plasmalemma during the photoperiodic flowering induction of soybean. Phyton (Austria) 36:9–28Google Scholar
  6. Conway EJ (1962) Microdiffusion analysis and volumetric error. Crosby Loockwood, LondonGoogle Scholar
  7. Cuellar M, Quilhot W, Rubio C, Soto C, Espinoza L, Carrasco H (2008) Phenolics, depsides and triterpenes from the chilean lichen Pseudocyphellaria nudata (Zahlbr.) D.J. Galloway. J Chil Chem Soc 53:1624–1625CrossRefGoogle Scholar
  8. Derewenda Z, Yariv J, Helliwell JR, Kaeb AJ, Dodson EJ, Papiz MZ, Wan T, Campbell J (1989) The structure of the saccharide binding site of concanavalin A. EMBO J 8:2189–2193PubMedPubMedCentralGoogle Scholar
  9. Díaz EM, Sacristán M, Legaz ME, Vicente C (2009) Isolation and characterization of a cyanobacterium binding protein and its cell wall ligand in the lichen Peltigera canina. Plant Signal Behav 4:598–603CrossRefPubMedPubMedCentralGoogle Scholar
  10. Díaz EM, Vicente-Manzanares M, Sacristán M, Vicente C, Legaz ME (2011) Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton. Plant Signal Behav 6:1525–1536CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fontaniella B, Molina MC, Vicente C (2000) An improved method for the separation of lichen symbionts. Phyton (Austria) 40:323–328Google Scholar
  12. Fontaniella B, Millanes AM, Vicente C, Legaz ME (2004) Concanavalin A binds to a mannose-containing ligand in the cell wall of some lichen phycobionts. Plant Physiol Biochem 42:773–779CrossRefPubMedGoogle Scholar
  13. Gottlieb M, Charko M (1987) Silver staining of native and denatured eukaryotic DNA in agarose gels. Anal Biochem 165:33–37CrossRefPubMedGoogle Scholar
  14. Honda NK, Vilegas W (1998) A química dos liquens. Quím Nova 6:110–125Google Scholar
  15. Kardish N, Silberstein L, Flemminger G, Galun M (1991) Lectin from the lichen Nephroma laevigatum. Localization and function. Symbiosis 11:47–62Google Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685CrossRefGoogle Scholar
  17. Legaz ME, Vicente C (1982) Two forms of arginase in Evernia prunastri. Biochem Biophys Res Commun 104:1441–1446CrossRefPubMedGoogle Scholar
  18. Legaz ME, Fontaniella B, Millanes AM, Vicente C (2004) Secreted arginases from phylogenetically far-related lichen species act as cross-recognition factors for two different algal cells. Eur J Cell Biol 83:1–12CrossRefGoogle Scholar
  19. Lehr H, Fleminger G, Galun M (1995) Lectin from the lichen Peltigera membranacea. Characterization and function. Symbiosis 18:1–13Google Scholar
  20. Lehr H, Galun M, Ott S, Jahns HM, Fleminger G (2000) Cephalodia of the lichen Peltigera aphthosa. Specific recognition of the compatible photobiont. Symbiosis 29:357–365Google Scholar
  21. Lockhart CM, Rowell P, Stewart WDP (1978) Phytohaemagglutinins from the nitrogen-fixing lichens Peltigera canina and P. polydactyla. FEMS Microbiol Lett 3:127–130CrossRefGoogle Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  23. Manoharan SS, Miao VPW, Andrésson OS (2012) LEC-2, a highly variable lectin in the lichen Peltigera membranacea. Symbiosis 58:91–98CrossRefPubMedPubMedCentralGoogle Scholar
  24. Max M, Peveling E (1983) Surface ligands in lichen symbionts visualized by fluorescence microscopy after use of lectins. Protoplasma 114:52–61Google Scholar
  25. Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121CrossRefPubMedPubMedCentralGoogle Scholar
  26. Miao VPW, Manoharan SS, Snæbjarnarson V, Andrésson OS (2012) Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea. Symbiosis 57:23–31CrossRefGoogle Scholar
  27. Molina MC, Vicente C (1995) Corelationships between enzymatic activity of lectins, putrescine content and chloroplast damage in Xanthoria parietina phycobionts. Cell Adhes Commun 3:1–12CrossRefPubMedGoogle Scholar
  28. Molina MC, Muñiz E, Vicente C (1993) Enzymatic activities of algal-binding protein and its algal cell wall receptor in the lichen Xanthoria parietina. An approach to the parasitic basis of mutualism. Plant Physiol Biochem 31:131–142Google Scholar
  29. Montfort W, Villafranca JE, Monzing AF, Ernst SR, Katzin B, Rutenberg E, Xoung NH, Hamlin R, Robertus JD (1987) The three dimensional structure of ricin at 2.8 Å. J Biol Chem 262:5398–5403PubMedGoogle Scholar
  30. Paulsrud P, Rikkinen J, Lindblad P (2001) Field experiments on cyanobacterial specificity in Peltigera aphthosa. New Phytol 152:117–123CrossRefGoogle Scholar
  31. Pedrosa MM, Legaz ME (1995) Separation of arginase isoforms by capillary zone electrophoresis and electrofocusing in density gradient column. Electrophoresis 16:659–669CrossRefPubMedGoogle Scholar
  32. Petit P (1982) Phytolectins from the nitrogen-fixing lichen Peltigera horizontalis: the binding pattern of primary protein extract. New Phytol 91:705–710CrossRefGoogle Scholar
  33. Petit P, Lallemant R, Savoye D (1983) Purified phytolectin from the lichen Peltigera canina var. canina which binds to the phycobiont cell walls and its use as cytochemical marker in situ. New Phytol 94:103–110CrossRefGoogle Scholar
  34. Planelles V, Legaz ME (1987) Purification and some proprieties of the secreted arginase of the lichen Evernia prunastri and its regulation by usnic acid. Plant Sci 51:9–16CrossRefGoogle Scholar
  35. Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481CrossRefGoogle Scholar
  36. Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwe Academic Publishing, Amsterdam, pp 31–72Google Scholar
  37. Sacristán M, Millanes AM, Legaz ME, Vicente C (2006) A lichen lectin specifically binds to the α-1,4-polygalactoside moiety of urease located in the cell wall of homologous algae. Plant Signal Behav 1:23–27CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shoham M, Yonath A, Sussmann JL, Moult J, Traub W, Kalb AJ (1979) Crystal structure of demetallized concanavalin A: the metal binding region. J Mol Biol 131:137–155CrossRefPubMedGoogle Scholar
  39. Vivas M, Sacristán M, Legaz ME, Vicente C (2010) The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens. Plant Biol 12:615–621PubMedGoogle Scholar
  40. Walters RR (1985) Ligands for mobilization. In: Dean PGD, Johnson WS, Middle FA (eds) Affinity chromatography: a practical approach. IRL Press, Oxford, pp 114–116Google Scholar
  41. Wastlhuber R, Loos E (1996) Differences between cultured and freshly isolated cyanobiont from Peltigera is their symbiosis-specific regulation of glucose carrier. Lichenologist 28:67–68Google Scholar
  42. Whittaker JW (2005) The radical chemistry of galactose oxidase. Arch Biochem Biophys 433:227–239CrossRefPubMedGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2016

Authors and Affiliations

  • Eva M. Díaz
    • 1
  • Carmen Cutrona
    • 1
  • Elena Sánchez-Elordi
    • 1
  • María-Estrella Legaz
    • 1
  • Carlos Vicente
    • 1
  1. 1.Team of Intercellular Communication in Plant Symbiosis, Faculty of BiologyComplutense UniversityMadridSpain

Personalised recommendations