Advertisement

Brazilian Journal of Botany

, Volume 36, Issue 4, pp 299–307 | Cite as

Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America

  • Radka Mühlsteinová
  • Tomáš Hauer
Article

Abstract

Costa Rica is considered to be a biodiversity hotspot but little is known of its cyanobacterial flora and only a few studies dealing with aeroterrestrial algae have been published from this region so far. Our work focuses on the diversity of terrestrial cyanobacteria from Costa Rican cloud forest and compares our findings to knowledge from surrounding regions. In March 2010 samples of macroscopic cyanobacterial mats were collected from rocks, soils and a bromeliad leaf pool near the town of San Gerardo de Rivas, Costa Rica. The composition of the mats was investigated using light microscopy of fresh samples and acquired cultures. Among the 52 morphotypes revealed, heterocytous cyanobacteria with colored sheaths dominated, even though the most common species was Aphanocapsa cf. muscicola. The majority of morphotypes were determined to species level, and the rest was classified only to genus. Interestingly, nearly half of the species are considered to be cosmopolitan according to current knowledge and only four of the species present in our samples were known previously from Costa Rica (Stigonema minutum, Scytonema ocellatum, Sc. javanicum, and Sc. hofmannii). These results emphasize the need for phycological research in this understudied tropical area. We believe that our study will help not only to uncover further biodiversity in Costa Rican cloud forest but also to understand the distribution of cyanobacterial species among different biogeographical and climatic regions.

Keywords

Blue-green algae Calochaete cimrmanii Central America Costa Rica Diversity Tropics 

Notes

Acknowledgments

The research was supported by Grant MŠMT/AMVIS LH12100. The authors would like to thank to anonymous reviewers for valuable comments to the manuscript, and to Markéta Bohunická and Jan Mareš for help with samples collection.

References

  1. Bischoff HW, BOLD HC (1963) Phycological Studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ Tex Publ 6318:1–95Google Scholar
  2. Bourrelly P, Manguin E (1952) Algues d’eau douce de la Guadeloupe et dépendances recueillies par la Mission P. Allorge em 1936. Societé D’Edition d’Enseignement Supérieur, Paris.Google Scholar
  3. Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370Google Scholar
  4. Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco Lowlands and the Guayana Uplands. Venezuela. Bot. Acta 107:422–431Google Scholar
  5. Caneva G, Salvadori O, Ricci S, Ceschin S (2005) Ecological analysis and biodeterioration processes over time at the Hieroglyphic Stairway in the Copan (Honduras) archaeological site. Plant Biosyst 139:295–310Google Scholar
  6. Castenholz RW (2001) Phylum BX. cyanobacteria. Oxygenic photosynthetic bacteria. In: Garrity G, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology: the Archaea and the deeply branching and phototrophic bacteria, vol 1. Springer, New YorkGoogle Scholar
  7. Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9PubMedCrossRefGoogle Scholar
  8. Dojani S, Lakatos M, Rascher U, Wanek W, Lüttge U, Büdel B (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202:521–529. doi: 10.1016/j.flora.2006.12.001 CrossRefGoogle Scholar
  9. Drouet F (1938) Notes non Myxophyceae I–IV. Bull Torrey Bot Club 65:285–292CrossRefGoogle Scholar
  10. Drouet F (1942) The filamentous Myxophyceae of Jamaica. Bot Ser Field Mus Nat Hist 20:107–122Google Scholar
  11. Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117:9–18. doi: 10.1007/s004420050625 CrossRefGoogle Scholar
  12. Freiberg E (1999) Influence of microclimate on the occurrence of cyanobacteria in the phyllosphere in a premontane rain forest of Costa Rica. Plant Biol 1:244–252. doi: 10.1111/j.1438-8677.1999.tb00250.x CrossRefGoogle Scholar
  13. Furnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570. doi: 10.1038/ismej.2008.14 PubMedCrossRefGoogle Scholar
  14. Gardner NL (1927) New Myxophyceae from Puerto Rico. Mem N Y Bot Garden 7:1–144Google Scholar
  15. Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegrad 55:131–139. doi: 10.1016/j.ibiod.2004.10.001 CrossRefGoogle Scholar
  16. Gaylarde CC, Ortega-Morales BO, Bartolo-Perez P (2007) Biogenic black crusts on buildings in unpolluted environments. Curr Microbiol 54:162–166. doi: 10.1007/s00284-006-0432-8 PubMedCrossRefGoogle Scholar
  17. Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamenflora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  18. Golubić S (1967) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumaná). Int Rev gesamten Hydrobiol Hydrogr 52:693–699CrossRefGoogle Scholar
  19. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  20. Hauer T (2010) Phototrophic biofilms on the interior walls of concrete Iterson-type cooling towers. J Appl Phycol 22:733–736. doi: 10.1007/s10811-010-9513-y CrossRefGoogle Scholar
  21. Hauer T, Bohunická M, Mühlsteinová R (2013) Calochaete gen. nov. (cyanobacteria, Nostocales)—a new cyanobacterial type from „páramo“zone in Costa Rica. Phytotaxa 109:36–44. doi: 10.11646/phytotaxa.109.1.4 Google Scholar
  22. Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105CrossRefGoogle Scholar
  23. Johansen JR, Casamatta DA (2005) Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol Stud 117:71–93CrossRefGoogle Scholar
  24. Kaštovský J, Fučíková K, Hauer T, Bohunická M (2011) Microvegetation on the top of Mt Roraima, Venezuela. Fottea 11:171–186Google Scholar
  25. Komárek J (2003) Problem of the taxonomic category “species” in cyanobacteria. Algol Stud 109:281–297CrossRefGoogle Scholar
  26. Komárek J, Anagnostidis K (1998) Cyanoprokaryota I. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, StuttgartGoogle Scholar
  27. Komárek J, Anagnostidis K (2005) Cyanoprokaryota II. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, MünchenGoogle Scholar
  28. Komárek J, Hauer T (2013) CyanoDB.cz—on-line database of cyanobacterial genera. University of South Bohemia, České Budějovice, Czech Republic. http://www.cyanodb.cz. Accessed 7 June 2013
  29. Kufferath H (1929) Algues et Protistes muscicoles, corticoles et terrestres récoltés sur la montagne de Barba (Costa-Rica). Ann Cryptogam Exot 2:23–52Google Scholar
  30. Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36:367–375CrossRefGoogle Scholar
  31. Lewin RA (2006) Black algae. J Appl Phycol 18:699–702. doi: 10.1007/s10811-005-9018-2 CrossRefGoogle Scholar
  32. Mataloni G, Komárek J (2004) Gloeocapsopsis aurea, a new subaerophytic cyanobacterium from maritime Antarctica. Polar Biol 27:623–628. doi: 10.1007/s00300-004-0620-6 CrossRefGoogle Scholar
  33. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca DAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  34. Ortega-Morales BO, Guezennec J, Hernandez-Duque G, Gaylarde CC, Gaylarde PM (2000) Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr Microbiol 40:81–85PubMedCrossRefGoogle Scholar
  35. Ortega-Morales BO, Gaylarde CC, Englert GE, Gaylarde PM (2005) Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, Mexico. Geomicrobiol J 22:261–268. doi: 10.1080/01490450500182524 CrossRefGoogle Scholar
  36. Ramirez M, Hernández-Mariné M, Novelo E, Roldán M (2010) Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling 26:399–409. doi: 10.1080/08927011003660404 PubMedCrossRefGoogle Scholar
  37. Rascher U, Lakatos M, Büdel B, Lüttge U (2003) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. Eur J Phycol 38:247–256. doi: 10.1080/0967026031000121679 CrossRefGoogle Scholar
  38. Řeháková K, Chlumská Z, Doležal J (2011) Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol 62:337–346. doi: 10.1007/s00248-011-9878-8 PubMedCrossRefGoogle Scholar
  39. Rivera-Aguilar V, Montejano G, Rodriguez-Zaragoza S, Duran-Diaz A (2006) Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the Tehuacan Valley, Puebla, Mexico. J Arid Environ 67:208–225. doi: 10.1016/j.jaridenv.2006.02.013 CrossRefGoogle Scholar
  40. Sant’Anna CL, Azevedo MTP, Fiore MF, Lorenzi AS, Kaštovský J, Komárek J (2011) Subgeneric diversity of Brasilonema (cyanobacteria, scytonemataceae). Rev Bras Bot 34:51–62. doi: 10.1590/S0100-84042011000100006 Google Scholar
  41. Sarthou C, Therezien Y, Couté A (1995) Cyanophycées de l’inselberg des Nouragues (Guyane française). Nova Hedwig 61:85–109Google Scholar

Copyright information

© Botanical Society of Sao Paulo 2013

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of Botany AS CRTřeboňCzech Republic

Personalised recommendations