European Archives of Paediatric Dentistry

, Volume 16, Issue 5, pp 377–382 | Cite as

Clinical and radiographic evaluation of Portland cement added to radiopacifying agents in primary molar pulpotomies

  • N. Lourenço Neto
  • N. C. T. Marques
  • A. P. Fernandes
  • M. A. Hungaro Duarte
  • R. C. C. Abdo
  • M. A. A. M. Machado
  • T. M. Oliveira
Original Scientific Article

Abstract

Aim

This was to evaluate the clinical and radiographic outcomes of Portland cement (PC) added to radiopacifying agents in primary molar pulpotomies.

Methods

Thirty primary mandibular molars of children aged between 5 and 9 years were randomly assigned to the following groups: PC; PC with iodoform (PC + CHI3); PC with zirconium oxide (PC + ZrO2) and treated by pulpotomy technique. Clinical and radiographic follow-up assessments were performed at 6, 12 and 24 months. Statistical analysis was performed by Fisher’s exact test (P < 0.05).

Results

The clinical and radiographic evaluations showed 100 % success rates, and the results showed no statistically significant difference between groups.

Conclusions

According to this study, PC added to radiopacifying agents exhibited satisfactory clinical and radiographic results in primary molar pulpotomies.

Keywords

Deciduous tooth Pulpotomy Portland cement Iodoformium Zirconium 

References

  1. ANSI/ADA Specification no 57—endodontic sealing material. American Dental Association. 2000.Google Scholar
  2. Blanchard S, Boynton J. Current pulp therapy options for primary teeth. J Mich Dent Assoc. 2010;92:40–1.Google Scholar
  3. Bortoluzzi EA, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Duarte MA. Radiographic effect of different radiopacifiers on a potential retrograde filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:628–32.CrossRefPubMedGoogle Scholar
  4. Camilleri J, Cutajar A, Maallia B. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material. Dent Mater. 2011;27:845–54.CrossRefPubMedGoogle Scholar
  5. Camilleri J. Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material. Int Endod J. 2010;43:231–40.CrossRefPubMedGoogle Scholar
  6. Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radiopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod. 2007;33:295–8.CrossRefPubMedGoogle Scholar
  7. Coutinho-Filho T, De-Deus G, Klein L, et al. Radiopacity and histological assessment of Portland cement plus bismuth oxide. Oral Med Oral Pathol Oral Radiol Endod. 2008;106:e69–77.CrossRefGoogle Scholar
  8. Cutajar A, Mallia B, Abela S, Camilleri J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent Mater. 2011;27:879–91.CrossRefPubMedGoogle Scholar
  9. Fernandes AP, Lourenço Neto N, Marques NCT, et al. Clinical and radiographic outcomes of the use of low level laser therapy in vital pulp of primary teeth. Int J Paediatr Dent. 2014. doi:10.1111/ipd.12115.PubMedGoogle Scholar
  10. Gomes Cornélio AL, Salles LP, Campos da Paz M, et al. Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study. J Endod. 2011;37:203–10.CrossRefPubMedGoogle Scholar
  11. Hungaro Duarte MA, de Oliveira El, Kadre GD, et al. Radiopacity of Portland cement associated with different radiopacifying agents. J Endod. 2009;35:737–40.CrossRefPubMedGoogle Scholar
  12. Hungaro Duarte MA, Minotti PG, Rodrigues CT, et al. Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. J Endod. 2012;38:394–7.CrossRefPubMedGoogle Scholar
  13. International Organization for Standardization ISO 6876. Dental root sealing materials. Geneva: Switzerland; 2001. pp. 1–10.Google Scholar
  14. Kim EC, Lee BC, Chang HS, et al. Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:54–7.CrossRefGoogle Scholar
  15. Koçak S, Erten H, Baris E, Türk S, Alaçam T. Evaluation of the biocompatibility of experimentally manufactured Portland cement: an animal study. J Clin Exp Dent. 2014;6:17–21.CrossRefGoogle Scholar
  16. Lee SJ, Chung J, Na HS, et al. Characteristics of novel root-end filling material using epoxy resin and Portland cement. Clin Oral Investig. 2013;17:1009–15.CrossRefPubMedGoogle Scholar
  17. Lin PY, Chen HS, Wang YH, Tu YK. Primary molar pulpotomy: a systematic reviw and network meta-analysis. J Dent. 2014;42:1060–77.CrossRefPubMedGoogle Scholar
  18. Lourenço Neto N, Marques NCT, Fernandes AP, et al. Biocompatibility of Portland cement associated with different radiopacifying agents. J Oral Sci. 2014;56:29–34.CrossRefPubMedGoogle Scholar
  19. Marciano MA, Costa RM, Camilleri J, et al. Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod. 2014;40:1235–40.CrossRefPubMedGoogle Scholar
  20. Morais CA, Bernardineli N, Garcia RB, Duarte MA, Guerisoli DM. Evaluation of tissue response to MTA and Portland cement with iodoform. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:417–21.CrossRefPubMedGoogle Scholar
  21. Moretti AB, Sakai VT, Oliveira TM, et al. The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J. 2008;41:547–55.CrossRefPubMedGoogle Scholar
  22. Oliveira TM, Moretti ABS, Sakai VT, et al. Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. Eur Arch Paediatr Dent. 2013;14:65–71.CrossRefPubMedGoogle Scholar
  23. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36:400–13.CrossRefPubMedGoogle Scholar
  24. Petrou MA, Alhamoi FA, Welk A, Altarabulsi M, Splieth CH. A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment. Clin Oral Investig. 2014;18:1383–9.CrossRefPubMedGoogle Scholar
  25. Ribeiro DA, Hungaro Duarte MA, Matsumoto MA, Marques ME, Salvador DM. Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements. J Endod. 2005;31:605–7.CrossRefPubMedGoogle Scholar
  26. Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater. 2008;24:149–64.CrossRefPubMedGoogle Scholar
  27. Sakai VT, Moretti AB, Oliveira TM, et al. Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. Br Dent J. 2009;207:128–39.CrossRefGoogle Scholar
  28. Seale NS, Coll JA. Vital pulp therapy for the primary dentition. Gen Dent. 2010;58:194–200.PubMedGoogle Scholar
  29. Weckwerth PH, Machado AC, Kuga MC, et al. Influence of radiopacifying agents on the solubility, pH and antimicrobial activity of Portland cement. Braz Dent J. 2012;23:515–20.CrossRefPubMedGoogle Scholar

Copyright information

© European Academy of Paediatric Dentistry 2015

Authors and Affiliations

  • N. Lourenço Neto
    • 1
  • N. C. T. Marques
    • 1
  • A. P. Fernandes
    • 1
  • M. A. Hungaro Duarte
    • 2
  • R. C. C. Abdo
    • 1
  • M. A. A. M. Machado
    • 1
  • T. M. Oliveira
    • 1
  1. 1.Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of DentistryUniversity of São PauloBauruBrazil
  2. 2.Department of Operative Dentistry, Endodontic and Dental, Bauru School of DentistryUniversity of São PauloBauruBrazil

Personalised recommendations