European Archives of Paediatric Dentistry

, Volume 14, Issue 5, pp 279–288

Aetiology of supernumerary teeth: a literature review

Review

Abstract

Background

Supernumerary teeth are teeth, or tooth-like structures that have either erupted or remain unerupted in addition to the 20 primary and 32 permanent teeth.

Aims

This paper attempts to (a) provide an overview of the proposed hypotheses and the current understanding of the aetiology of supernumerary teeth, and (b) review the published cases of supernumerary teeth occurring in families.

Review

No studies have been able to distinguish between different aetiologies for the different locations of supernumerary teeth, while, from a developmental or molecular perspective, the proposed hypotheses may be plausible and explains the origin of different types of supernumerary teeth.

Conclusion

The only clearly evident feature, based on the existing published reports, is that it is logical to state that supernumerary teeth have a genetic component in their aetiology.

Keywords

Aetiology Supernumerary teeth Hyperdontia Genes Heredity 

References

  1. Acevedo AC, da Fonseca JA, Grinham J, et al. Autosomal-dominant ankyloglossia and tooth number anomalies. J Dent Res. 2010;89:128–32.PubMedGoogle Scholar
  2. Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development. 2010;137:3221–31.PubMedGoogle Scholar
  3. Almeida JD, Guimarães Cabral LA, Martins Gomes AP, Moraes E. Supernumerary mesiodentes with familial character: a clinical report. Quintessence Int. 1995;26:343–5.PubMedGoogle Scholar
  4. Anthonappa RP, Omer RS, King NM. Characteristics of 283 supernumerary teeth in southern Chinese children. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:e48–54.PubMedGoogle Scholar
  5. Babacan H, Öztürk F, Polat HB. Identical unerupted maxillary incisors in monozygotic twins. Am J Orthod Dentofac Orthop. 2010;138:498–509.Google Scholar
  6. Babu V, Nagesh KS, Diwakar NR. A rare case of hereditary multiple impacted normal and supernumerary teeth. J Clin Pediatr Dent. 1998;23:59–61.PubMedGoogle Scholar
  7. Bateson W. On numerical variation in teeth, with a discussion of conception of homology. Proc Zool Soc Lond. 1982;102–115.Google Scholar
  8. Batra P, Duggal R, Parkash H. Non-syndromic multiple supernumerary teeth transmitted as an autosomal dominant trait. J Oral Pathol Med. 2005;34:621–5.PubMedGoogle Scholar
  9. Beere D, Hargreaves JA, Sperber GH, Cleaton-Jones P. Mirror image supplemental primary incisor teeth in twins: case report and review. Pediatr Dent. 1990;12:390–2.PubMedGoogle Scholar
  10. Berkovitz BK, Moore MH. Tooth replacement in the upper jaw of the rainbow trout (Salmo gairdneri). J Exp Zool. 1975;193:221–34.PubMedGoogle Scholar
  11. Black GV. Supernumerary teeth. Dent Summ. 1909;29:83–110.Google Scholar
  12. Brodie AG. Two unusual cases of supernumerary teeth. Angle Orthod. 1936;6:209–11.Google Scholar
  13. Brook AH. A unifying aetiological explanation for anomalies of human tooth number and size. Arch Oral Biol. 1984;29:373–8.PubMedGoogle Scholar
  14. Bruning LJ, Dunlop L, Mergele ME. A report of supernumerary teeth in Houston, Texas school children. J Dent Child. 1957;24:98–105.Google Scholar
  15. Bucci E, Martina R. True hyperdontia in monochorial twins. Clinical case. Arch Stomatol (Napoli). 1975;16:305–13.Google Scholar
  16. Burdon KP, McKay JD, Sale MM, et al. Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance–Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation. Am J Hum Genet. 2003;73:1120–30.PubMedGoogle Scholar
  17. Cadenat H, Combelles R, Fabert G, Clouet M. Mesiodens and heredity. Rev Stomatol Chir Maxillofac. 1977;78:341–6.PubMedGoogle Scholar
  18. Cahuana A, Palma C, Gonzáles W, Geán E. Oral manifestations in Ellis–van Creveld syndrome: report of five cases. Pediatr Dent. 2004;26:277–82.PubMedGoogle Scholar
  19. Carton A, Rees RT. Mirror image dental anomalies in identical twins. Br Dent J. 1987;162:193–4.PubMedGoogle Scholar
  20. Cassia A, El-Toum S, Feki A, Megarbane A. Five mandibular incisors: an autosomal recessive trait? Br Dent J. 2004;197:307–9.PubMedGoogle Scholar
  21. Choi WK, Chang RC, Chuang ST. Bilateral mesiodentes of identical twins—a case report. Zhonghua Ya Yi Xue Hui Za Zhi. 1990;9:116–21.PubMedGoogle Scholar
  22. Danforth CH. The occurrence and genetic behavior of duplicate lower incisors in the mouse. Genetics. 1958;43:139–48.PubMedGoogle Scholar
  23. Desai RS, Shah NP. Multiple supernumerary teeth in two brothers: a case report. J Oral Pathol Med. 1998;27:411–3.PubMedGoogle Scholar
  24. Ferrante MI, Giorgio G, Feather SA, et al. Identification of the gene for oral–facial–digital type I syndrome. Am J Hum Genet. 2001;68:569–76.PubMedGoogle Scholar
  25. Finn SB. Clinical Pedodontics. Philadelphia: W. B. Saunders. 1967. pp. 477–506.Google Scholar
  26. Fraser GJ, Graham A, Smith MM. Conserved deployment of genes during odontogenesis across osteichthyans. Proc Biol Sci. 2004;271:2311–7.PubMedGoogle Scholar
  27. Fraser GJ, Berkovitz BK, Graham A, Smith MM. Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition. Evol Dev. 2006a;8:446–57.PubMedGoogle Scholar
  28. Fraser GJ, Graham A, Smith MM. Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. J Exp Zool B Mol Dev Evol. 2006b;306:183–203.PubMedGoogle Scholar
  29. Gallas MM, García A. Retention of permanent incisors by mesiodens: a family affair. Br Dent J. 2000;188:63–4.PubMedGoogle Scholar
  30. Garvey MT, Barry HJ, Blake M. Supernumerary teeth—an overview of classification, diagnosis and management. J Can Dent Assoc. 1999;65:612–6.PubMedGoogle Scholar
  31. Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.PubMedGoogle Scholar
  32. Gruneberg H. The molars of the tabby mouse, and a test of the ‘single-active X-chromosome’ hypothesis. J Embryol Exp Morphol. 1966;15:223–44.PubMedGoogle Scholar
  33. Gysel C. Mesiodentes familiales. Revue Belge Med Dent. 1963;18:929–60.Google Scholar
  34. Hammond-Williams C. Supernumerary tooth heredity. Br Dent J. 1934;56:500.Google Scholar
  35. Handrigan GR, Richman JM. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata). Dev Biol. 2010;337:171–86.PubMedGoogle Scholar
  36. Handrigan GR, Leung KJ, Richman JM. Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development. 2010;137:3545–9.PubMedGoogle Scholar
  37. Himelhoch DA, Scott BJ, Olsen RA. Dental defects in incontinentia pigmenti: case report. Pediatr Dent. 1987;9:236–9.PubMedGoogle Scholar
  38. Hunstadbråten K. Anomalies in twins. Quintessenz. 1965;16:71–2.PubMedGoogle Scholar
  39. Huysseune A, Thesleff I. Continuous tooth replacement: the possible involvement of epithelial stem cells. BioEssays. 2004;26:665–71.PubMedGoogle Scholar
  40. Inchingolo F, Tatullo M, Abenavoli FM, et al. Non-syndromic multiple supernumerary teeth in a family unit with a normal karyotype: case report. Int J Med Sci. 2010;7:378–84.PubMedGoogle Scholar
  41. Isaacson KG, Thom AR, Horner K, Whaites EJ. Orthodontic radiographs-guidelines, 3rd ed. London: British Orthodontic Society. 2008.Google Scholar
  42. Jarvinen E, Salazar-Ciudad I, Birchmeier W, et al. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA. 2006;103:18627–32.PubMedGoogle Scholar
  43. Jarvinen E, Tummers M, Thesleff I. The role of the dental lamina in mammalian tooth replacement. J Exp Zool B Mol Dev Evol. 2009;312:281–91.Google Scholar
  44. Jasmin JR, Jonesco-Benaiche N, Muller-Giamarchi M. Supernumerary teeth in twins. Oral Surg Oral Med Oral Pathol. 1993;76:258–9.PubMedGoogle Scholar
  45. Kangas AT, Evans AR, Thesleff I, Jernvall J. Non-independence of mammalian dental characters. Nature. 2004;432:211–4.PubMedGoogle Scholar
  46. Kaufman MH, Chang HH, Shaw JP. Craniofacial abnormalities in homozygous Small eye (Sey/Sey) embryos and newborn mice. J Anat. 1995;186:607–17.PubMedGoogle Scholar
  47. Kawashima A, Nomura Y, Aoyagi Y, Asada Y. Hereditary may be one of the etiologies of supernumerary teeth. Ped Dent J. 2006;16:115–7.Google Scholar
  48. Kerley MA, Kollar EJ. Supernumerary tooth formation in mouse molar transplants. J Dent Res. 1977;56:1344.PubMedGoogle Scholar
  49. Kitao S, Lindor NM, Shiratori M, Furuichi Y, Shimamoto A. Rothmund-Thomson syndrome responsible gene, RECQL4: genomic structure and products. Genomics. 1999;61:268–76.PubMedGoogle Scholar
  50. Klein OD, Minowada G, Peterkova R, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial–mesenchymal FGF signaling. Dev Cell. 2006;11:181–90.PubMedGoogle Scholar
  51. Konttinen ML, Alvesalo L, Sainio P, Ryynänen M. Supernumerary teeth in a family. Proc Finn Dent Soc. 1984;80:80–4.PubMedGoogle Scholar
  52. Krishnan U, Parker J, Aldeeweli W, Al Awadhi AW. Familial nonsyndromal multiple supernumerary teeth: a case report. Dent Update. 2009;36:230–2.PubMedGoogle Scholar
  53. Kuraguchi M, Wang XP, Bronson RT, et al. Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet. 2006;2:e146.PubMedGoogle Scholar
  54. Langowska-Adamczyk H, Karmanska B. Similar locations of impacted and supernumerary teeth in monozygotic twins: a report of 2 cases. Am J Orthod Dentofacial Orthop. 2001;119:67–70.PubMedGoogle Scholar
  55. Lee B, Thirunavukkarasu K, Zhou L, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet. 1997;16:307–10.PubMedGoogle Scholar
  56. Liu F, Chu EY, Watt B, et al. Wnt/betacatenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 2008;313:210–24.PubMedGoogle Scholar
  57. Lumsden AGS. Pattern formation in the molar dentition of mouse. J Biol Buccale. 1979;7:77–103.PubMedGoogle Scholar
  58. Marya CM, Kumar BR. Familial occurrence of mesiodentes with unusual findings: case reports. Quintessence Int. 1998;29:49–51.PubMedGoogle Scholar
  59. Mason C, Rule DC. Midline supernumeraries: a family affair. Dent Update. 1995;22:34–5.PubMedGoogle Scholar
  60. Melamed Y, Barkai G, Frydman M. Multiple supernumerary teeth (MSNT) and Ehlers–Danlos syndrome (EDS): a case report. J Oral Pathol Med. 1994;23:88–91.PubMedGoogle Scholar
  61. Mercuri LG, O’Neill R. Multiple impacted and supernumerary teeth in sisters. Oral Surg Oral Med Oral Pathol. 1980;50:293.PubMedGoogle Scholar
  62. Messer JG. Supernumerary molar teeth. A case report. Br Dent J. 1972;133:261–2.PubMedGoogle Scholar
  63. Molleda Medrano N. Algunos casos de dientes supernumerarios. Rev Esp Estom. 1956:244–48.Google Scholar
  64. Momeni P, Glockner G, Schmidt O, et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet. 2000;24:71–4.PubMedGoogle Scholar
  65. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773–9.PubMedGoogle Scholar
  66. Munne PM, Tummers M, Jarvinen E, Thesleff I, Jernvall J. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development. 2009;136:393–402.PubMedGoogle Scholar
  67. Murashima-Suginami A, Takahashi K, Sakata T, et al. Enhanced BMP signaling results in supernumerary tooth formation in USAG-1 deficient mouse. Biochem Biophys Res Commun. 2008;369:1012–6.PubMedGoogle Scholar
  68. Mustonen T, Pispa J, Mikkola ML, et al. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol. 2003;259:123–36.PubMedGoogle Scholar
  69. Nadal-Valldaura A. Un caso de dos hermanos con dientes supernumerarios. Rev Esp Estom. 1961;9:101–4.Google Scholar
  70. Nakamura T, de Vega S, Fukumoto S, et al. Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J Biol Chem. 2008;283:4825–33.PubMedGoogle Scholar
  71. Niswander JD, Sujaku C. Congenital anomalies of teeth in the Japanese children. Am J Phys Anthropol. 1963;21:569–74.PubMedGoogle Scholar
  72. Ohazama A, Johnson EB, Ota MS, et al. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS ONE. 2008;3:e4092.PubMedGoogle Scholar
  73. Ohazama A, Haycraft CJ, Seppala M, et al. Primary cilia regulate Shh activity in the control of molar tooth number. Development. 2009;136:897–903.PubMedGoogle Scholar
  74. Omer RS, Anthonappa RP, King NM. Determination of the optimum time for surgical removal of unerupted anterior supernumerary teeth. Pediatr Dent. 2010;32:14–20.PubMedGoogle Scholar
  75. Orhan AI, Ozer L, Orhan K. Familial occurrence of nonsyndromal multiple supernumerary teeth. A rare condition. Angle Orthod. 2006;76:891–7.PubMedGoogle Scholar
  76. Osborn JW. Morphogenetic gradients: field versus clones. In Development, Function and Evolution of teeth (Edited by Butler PM and Joysey KA). Academic Press, New York 1978: p. 171.Google Scholar
  77. Osburn AS. Original communications on supernumerary teeth in man and other mammals. Dent Cosmos. 1912;54:1192–203.Google Scholar
  78. Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat. 2002;19:209–16.PubMedGoogle Scholar
  79. Peterkova R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connect Tissue Res. 2002;43:120–8.PubMedGoogle Scholar
  80. Peterkova R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Arch Oral Biol. 2005;50:219–25.PubMedGoogle Scholar
  81. Peterkova R, Churava S, Lesot H, et al. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. J Exp Zool B Mol Dev Evol B. 2009;312:292–308.Google Scholar
  82. Prochazka J, Pantalacci S, Churava S, et al. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci USA. 2010;107:15497–502.PubMedGoogle Scholar
  83. Proff P, Fanghänel J, Allegrini S Jr, Bayerlein T, Gedrange T. Problems of supernumerary teeth, hyperdontia or dentes supernumerarii. Ann Anat. 2006;188:163–9.PubMedGoogle Scholar
  84. Ranta R, Ylipaavalniemi P. Development course of supernumerary premolars in childhood: report of two cases. J Dent Child. 1981;48:385–8.Google Scholar
  85. Regattieri LR, Parker JL. Supernumerary teeth associated with Fabry-Anderson’s syndrome. Oral Surg Oral Med Oral Pathol. 1973;35:432–3.PubMedGoogle Scholar
  86. Rubin MM, Nevins A, Berg M, Borden B. A comparison of identical twins in relation to three dental anomalies: multiple supernumerary teeth, juvenile periodontosis, and zero caries incidence. Oral Surg Oral Med Oral Pathol. 1981;52:391–4.PubMedGoogle Scholar
  87. Ryoo HM, Kang HY, Lee SK, Lee KE, Kim JW. RUNX2 mutations in cleidocranial dysplasia patients. Oral Dis. 2010;16:55–60.PubMedGoogle Scholar
  88. Saarenmaa L. The origin of supernumerary teeth. Acta Odontol Scand. 1951;9:293–303.PubMedGoogle Scholar
  89. Sanei-Moghaddam A, Hyde N, Williamson P. Endoscopic removal of a supernumerary tooth from the nasal cavity in an adult. Br J Oral Maxillofac Surg. 2009;47:484–5.PubMedGoogle Scholar
  90. Scanlan PJ, Hodges SJ. Supernumerary premolar teeth in siblings. Br J Orthod. 1997;24:297–300.PubMedGoogle Scholar
  91. Schön F. Supernumerary incisors in uniovular twins, and their treatment by means of electrosurgery. Quintessence Int Dent Dig. 1974;5:13–8.Google Scholar
  92. Schwartz JH. Supernumerary teeth in anthropoid primates and models of tooth development. Arch Oral Biol. 1984;29:833–42.PubMedGoogle Scholar
  93. Sedano HO, Gorlin R. Familial occurrence of mesiodens. Oral Surg Oral Med Oral Pathol. 1969;27:360–2.PubMedGoogle Scholar
  94. Seddon RP, Johnstone SC, Smith PB. Mesiodentes in twins: a case report and a review of the literature. Int J Paediatr Dent. 1997;7:177–84.PubMedGoogle Scholar
  95. Seppala M, Depew MJ, Martinelli DC, et al. Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J Clin Invest. 2007;117:1575–84.PubMedGoogle Scholar
  96. Sharma A. Familial occurence of mesiodens-a case report. J Indian Soc Pedod Prev Dent. 2003;21:84–5.PubMedGoogle Scholar
  97. Sharma A. A rare case of concomitant hypo-hyperdontia in identical twins. J Indian Soc Pedod Prev Dent. 2008;26:s79–81.PubMedGoogle Scholar
  98. Sofaer JA. Aspects of the tabby-crinkled-downless syndrome. I. The development of tabby teeth. J Embryol Exp Morphol. 1969;22:181–205.PubMedGoogle Scholar
  99. Suda N, Hamada T, Hattori M, et al. Diversity of supernumerary tooth formation in siblings with cleidocranial dysplasia having identical mutation in RUNX2: possible involvement of non-genetic or epigenetic regulation. Orthod Craniofac Res. 2007;10:222–5.PubMedGoogle Scholar
  100. Suda N, Hattori M, Kosaki K, et al. Correlation between genotype and supernumerary tooth formation in cleidocranial dysplasia. Orthod Craniofac Res. 2010;13:197–202.PubMedGoogle Scholar
  101. Sumida T, Ishikawa A, Hamakawa H. Impacted teeth in the same location of monozygotic twins: a report of two cases. WebmedCentral Dentistry 2010;1:WMC001048; http://www.webmedcentral.com/article_view/1048.
  102. Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT. The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev Biol. 2004;268:185–94.PubMedGoogle Scholar
  103. Tummers M, Thesleff I. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol. 2009;312B:309–19.PubMedGoogle Scholar
  104. Viriot L, Peterkova R, Peterka M, Lesot H. Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connect Tissue Res. 2002;43:129–33.PubMedGoogle Scholar
  105. Wang XX, Zhang J, Wei FC. Autosomal dominant inherence of multiple supernumerary teeth. Int J Oral Maxillofac Surg. 2007;36:756–8.PubMedGoogle Scholar
  106. Wang XP, O’Connell DJ, Lund JJ, et al. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development. 2009;136:1939–49.PubMedGoogle Scholar
  107. Witter K, Lesot H, Peterka M, Vonesch JL, Misek I, Peterkova R. Origin and developmental fate of vestigial tooth primordia in the upper diastema of the field vole (Microtus agrestis. Rodentia). Arch Oral Biol. 2005;50:401–9.PubMedGoogle Scholar
  108. Yanagita M, Okuda T, Endo S, et al. Uterine sensitization-associated gene-1 (USAG-1), a novel BMP antagonist expressed in the kidney, accelerates tubular injury. J Clin Invest. 2006;116:70–9.PubMedGoogle Scholar
  109. Zhang Q, Murcia NS, Chittenden LR, et al. Loss of the Tg737 protein results in skeletal patterning defects. Dev Dyn. 2003;227:78–90.PubMedGoogle Scholar
  110. Zhang Z, Lan Y, Chai Y, Jiang R. Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science. 2009;323:1232–4.PubMedGoogle Scholar
  111. Zhou P, Byrne C, Jacobs J, Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 1995;9:700–13.PubMedGoogle Scholar

Copyright information

© European Academy of Paediatric Dentistry 2013

Authors and Affiliations

  • R. P. Anthonappa
    • 1
  • N. M. King
    • 1
  • A. B. M. Rabie
    • 2
  1. 1.School of Dentistry, Faculty of Medicine, Dentistry and Health SciencesThe University of Western AustraliaPerthAustralia
  2. 2.Private PracticeHong KongSAR China

Personalised recommendations