Advertisement

MTZ industrial

, Volume 4, Issue 1, pp 64–69 | Cite as

Injection Nozzle Design for Longer Life at Higher Injection Pressures

  • Vladislav E. Lazarev
  • Eugeny A. Lazarev
  • Georgiy V. Lomakin
  • Johann Wloka
Research Fuel Injection
  • 46 Downloads

The increase in power density and the minimisation of emissions from modern diesel engines is often achieved by a further increases in injection pressure. Higher injection pressures are a source of higher stress at the needle guidance area and can have negative effects on wear and hence the service life of the nozzle. A simulation method developed by the South Ural State University and Technische Universität München can reveal weak points in nozzles and indicate potential for optimised nozzle geometry.

1 High pressure and wear resistance

The constant increase of the specific power output of modern diesel engines and new restrictive emissions regulations force engine manufactures to increase injection pressures. Due to higher injection pressures the thermal stresses in the nozzle and the injector are also increased. Higher hydraulic, thermal and mechanical stresses cause higher wear on the contact surface of the needle-guidance interface.

Furthermore, other wear effects can be observed,...

Keywords

High Injection Pressure Injection Nozzle Needle Guidance Fuel Pressure Specific Power Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

IMEP

Indicated mean effective pressure — [MPa]

n

Speed of crankshaft rotation — [rpm]

l

Length of the needle — [mm]

Tneedle

Temperature of the needle — [°C]

t

Service life — [operating hours]

λ

Air ratio — [/]

Texhaust

Temperature of the exhaust gases — [°C]

FC

Fuel consumption — [kg/h]

SFC

Specific fuel consumption — [g/kWh]

Cq

Empirical coefficient of the Woschni equation — [/]

P

Current value of the cylinder pressure — [Pa]

T

Current value of the cylinder temperature — [K]

D

Bore — [m]

W

Coefficient of the air velocity for combustion chamber — [m/s]

Ih

Linear integral intensity of the wear — [m/m]

h

Limit depth of the worn material for needle and for nozzle’s body — [m]

hi

Movement of the needle — [m]

μ

Coefficient of friction — [/]

Pa

Nominal pressure of the contact — [Pa]

E

Young’s modulus for sliding material — [Pa]

σ

Normal (or equivalent) stress for contact material — [Pa]

σUlt

Ultimate stress for contact material — [Pa]

VR

Volume absorbing thermal load — [m3]

Vd

Volume deformed due to friction process — [m3]

ρR

Coefficient of accumulation of the friction energy — [/]

Notes

Thanks

This project was funded by DAAD, the German Academic Exchange Service, Bonn, Germany (A/10/72858, Ref. num. 325) and the Ministry of Education of the Russian Federation, Moscow, Russia (Ref. num. 2.2.2.3/15088). It was carried out at the Internal Combustion Engines Dept. of the Technische Universität München (Germany).

References

  1. [1]
    Lazarev, V.; Malozemov, A.; Bondar, V.: Die Einschätzungsmethode der Verschleissintensität und der Nutzdauer einer Präzis-Kupplung einer Einspritzdüse im Diesel (das Original in der russischen Sprache). In: Motorenbau (2007), No. 3, pp. 26–29Google Scholar
  2. [2]
    Ofner, B.: Diesemotorische Kraftstoffzerstäubung und Gemischbildung mit Common-Rail Einspritzsystemen, Dissertation, TU München 2001Google Scholar
  3. [3]
    Grosse-Löscher, H.; Haberland, H.: Schwarmintelligenz zur Optimierung von Einspritzdüsen. In: MTZ 71 (2010), No. 2, pp. 80–85Google Scholar
  4. [4]
    Anders, U.; Scheying, H.: Betrachtungen über die Kraftstoff-Einspritzung schnellaufender Vorkammer-Dieselmotoren, MTZ 22 (1961), No. 7Google Scholar
  5. [5]
    Woschni, G.: A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE670931, SAE International Technical Papers 1967Google Scholar
  6. [6]
    Lazarev, V.: Die Erhöhung der Lebensdauer der Einspritzdüsen des Kraftstoffs in Dieselmotoren durch die die Verringerung der Lastigkeit und der Intensität des Verschleisses einer Präzis-Kupplungen (das Original in der russischen Sprache): Monografie. — Tscheljabinsk: Das Verlagszentrum Süd-Uralische Staatliche Universität (2010)Google Scholar
  7. [7]
    Ansys Workbench Handbook, 2007Google Scholar
  8. [8]
    Fleischer, G.: Energetische Methode der Bestimmung des Verschleißes // Schmierungstechnik, 1973, Band 4, pp. 9–12Google Scholar
  9. [9]
    Fleischer, G.; Brader, H.; Thum, H.: Verschleiß und Zuverlässigkeit. Berlin: VEB, 1980Google Scholar
  10. [10]
    Lazarev, V. E.; Wloka, J.; Wachtmeister, G.: A Method for the Estimation of the Service Life of a Precision Guiding Interface “Needle — Nozzle Body” of a Common-Rail-Injector for High Rail Pressures. Proceedings of the JSAE/SAE International Conference — Powertrains, Fuels and Lubricants, 30 August to 2 September 2011, Kyoto, Japan. Copyright © 2011 Society of Automotive Engineers of Japan, Inc.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Vladislav E. Lazarev
    • 1
  • Eugeny A. Lazarev
    • 1
  • Georgiy V. Lomakin
    • 1
  • Johann Wloka
    • 2
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Technische Universität MünchenMünchenGermany

Personalised recommendations