Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers

  • 15 Accesses



High-grade gliomas are aggressive primitive brain tumors presenting aberrant vasculature, regional necrosis, and areas of hypoxia. Tumor hypoxia is associated with resistance to conventional treatment and worse prognosis. [18F]-fluoromisonidazole (18F-FMISO) is the most extensively investigated radiotracer for the evaluation of hypoxia. However, the use of 18F-FMISO in clinical practice has been hampered mainly due to the slow clearance of the unbound tracer from normoxic tissue and its low tumor-to-background ratio (TBR). The research community has therefore investigated other radiotracers to overcome the drawbacks of 18F-FMISO. This mini-review aims to present an update on the most relevant PET studies published in the last 15 years evaluating the utility of radiotracers for hypoxia imaging other than 18F-FMISO in high-grade glioma (HGG) patients.


A comprehensive computer literature search of studies was carried out in PubMed/MEDLINE database to identify the most relevant studies published in the last 15 years which investigated the utility of hypoxia PET tracers other than 18F-FMISO in the assessment of tumor hypoxia in patients with HGG.


18F-flouroazomycin arabinoside (18F-FAZA) has been proposed as a valid alternative to 18F-FMISO for the assessment of hypoxia, due to its improved biodistribution and enhanced tumor-to-background ratio. Also 1-(2-[18F]fluoro-1[hydroxymethyl]ethoxy)methyl-2-nitroimidazole(18F-FRP170) seems a valuable hypoxia tracer in patients with brain tumor. The value of copper-diacetyl-bis(N4-methylthiosemicarbazone)(Cu-ATSM) seems controversial. Few evidences still exist regarding the utility of 18F-2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide (18F-EF5).


Hypoxia PET imaging has the potential to provide useful information for the clinicians and to guide hypoxia tailored treatments. According to the present literature, the most promising hypoxic tracer seems to be 18F-FAZA, but well-designed and wide trials to validate hypoxia radiotracers and evaluate their clinical utility in daily practice are still lacking.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Ostrom QT et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(4):1–63

  2. 2.

    Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med (Berl) 85(12):1301–1307

  3. 3.

    Walsh JC et al (2014) The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 21(10):1516–1554

  4. 4.

    McKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br J Radiol 87(1035):20130676

  5. 5.

    Carreau A et al (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253

  6. 6.

    Huang W-J, Chen W-W, Zhang X (2016) Glioblastoma multiforme: effect of hypoxia and hypoxia inducible factors on therapeutic approaches. Oncol Lett 12(4):2283–2288

  7. 7.

    Rockne RC et al (2015) A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET. J R Soc Interface 12(103):20141174

  8. 8.

    Hirata K et al (2019) The roles of hypoxia imaging using (18)F-fluoromisonidazole positron emission tomography in glioma treatment. J Clin Med 8(8):1088

  9. 9.

    Bell C et al (2015) Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med 45(2):136–150

  10. 10.

    Bonnitcha P, Grieve S, Figtree G (2018) Clinical imaging of hypoxia: current status and future directions. Free Radic Biol Med 126:296–312

  11. 11.

    Quartuccio N, Asselin MC (2018) The validation path of hypoxia PET imaging: focus on brain tumours. Curr Med Chem 25(26):3074–3095

  12. 12.

    Rajendran JG, Krohn KA (2015) F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 45(2):151–162

  13. 13.

    Bekaert L et al (2017) [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur J Nucl Med Mol Imaging 44(8):1383–1392

  14. 14.

    Busk M et al (2013) PET hypoxia imaging with FAZA: reproducibility at baseline and during fractionated radiotherapy in tumour-bearing mice. Eur J Nucl Med Mol Imaging 40(2):186–197

  15. 15.

    Chitneni SK et al (2011) Molecular imaging of hypoxia. J Nucl Med 52(2):165–168

  16. 16.

    Fujibayashi Y et al (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38(7):1155–1160

  17. 17.

    Gerstner ER et al (2016) ACRIN 6684: assessment of tumor hypoxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI. Clin Cancer Res 22(20):5079–5086

  18. 18.

    Fleming IN et al (2014) Imaging tumour hypoxia with positron emission tomography. Br J Cancer 112(2):238–250

  19. 19.

    Lopci E et al (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging 4(4):365–384

  20. 20.

    Souvatzoglou M et al (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34(10):1566–1575

  21. 21.

    Piert M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46(1):106–113

  22. 22.

    Reischl G et al (2007) Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA–first small animal PET results. J Pharm Pharm Sci 10(2):203–211

  23. 23.

    Savi A et al (2017) First evaluation of PET-based human biodistribution and dosimetry of (18)F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med 58(8):1224–1229

  24. 24.

    Postema EJ et al (2009) Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36(10):1565–1573

  25. 25.

    Mapelli P et al (2017) 18F-FAZA PET/CT hypoxia imaging of high-grade glioma before and after radiotherapy. Clin Nucl Med 42(12):e525–e526

  26. 26.

    Mapelli P et al (2017) Hypoxia 18F-FAZA PET/CT imaging in lung cancer and high-grade glioma: open issues in clinical application. Clin Transl Imaging 5(4):389–397

  27. 27.

    Evans SM et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10(24):8177–8184

  28. 28.

    Evans SM et al (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64(5):1886–1892

  29. 29.

    Koch CJ et al (2010) Biodistribution and dosimetry of (18)F-EF5 in cancer patients with preliminary comparison of (18)F-EF5 uptake versus EF5 binding in human glioblastoma. Eur J Nucl Med Mol Imaging 37(11):2048–2059

  30. 30.

    Koch CJ et al (2009) The radiation response of cells from 9L gliosarcoma tumours is correlated with [F18]-EF5 uptake. Int J Radiat Biol 85(12):1137–1147

  31. 31.

    Kaneta T et al (2007) Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med 21(2):101–107

  32. 32.

    Shibahara I et al (2010) Imaging of hypoxic lesions in patients with gliomas by using positron emission tomography with 1-(2-[18F] fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole, a new 18F-labeled 2-nitroimidazole analog. J Neurosurg 113(2):358–368

  33. 33.

    Beppu T et al (2014) Standardized uptake value in high uptake area on positron emission tomography with 18F-FRP170 as a hypoxic cell tracer correlates with intratumoral oxygen pressure in glioblastoma. Mol Imaging Biol 16(1):127–135

  34. 34.

    Beppu T et al (2015) High-uptake areas on positron emission tomography with the hypoxic radiotracer (18)F-FRP170 in glioblastomas include regions retaining proliferative activity under hypoxia. Ann Nucl Med 29(4):336–341

  35. 35.

    Padhani AR et al (2007) Imaging oxygenation of human tumours. Eur Radiol 17(4):861–872

  36. 36.

    Vavere AL, Lewis JS (2007) Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 43:4893–4902

  37. 37.

    Niccoli Asabella A et al (2014) The copper radioisotopes: a systematic review with special interest to 64Cu. Biomed Res Int 2014:786463

  38. 38.

    Lewis JS et al (2001) Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42(4):655–661

  39. 39.

    Toriihara A et al (2018) Prognostic implications of (62)Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) PET/CT in patients with glioma. Ann Nucl Med 32(4):264–271

  40. 40.

    Tateishi K et al (2014) (62)Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) PET in human gliomas: comparative study with [(18)F]fluorodeoxyglucose and L-methyl-[(11)C]methionine PET. AJNR Am J Neuroradiol 35(2):278–284

  41. 41.

    Valk PE et al (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33(12):2133–2137

  42. 42.

    Rajendran JG et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252

  43. 43.

    Rajendran JG et al (2003) [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30(5):695–704

  44. 44.

    Dence CS et al (2008) Autoradiographic and small-animal PET comparisons between (18)F-FMISO, (18)F-FDG, (18)F-FLT and the hypoxic selective (64)Cu-ATSM in a rodent model of cancer. Nucl Med Biol 35(6):713–720

  45. 45.

    Yuan H et al (2006) Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 47(6):989–998

  46. 46.

    Bowen SR et al (2011) Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 38(6):771–780

  47. 47.

    Carlin S et al (2014) A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers. J Nucl Med 55(3):515–521

  48. 48.

    Watanabe S et al (2019) Biodistribution and radiation dosimetry of the novel hypoxia PET probe [(18)F]DiFA and comparison with [(18)F]FMISO. EJNMMI Res 9(1):60–60

  49. 49.

    Shimizu Y et al (2019) A novel PET probe "[(18)F]DiFA" accumulates in hypoxic region via glutathione conjugation following reductive metabolism. Mol Imaging Biol 21(1):122–129

  50. 50.

    Nakata N et al (2019) Comparative evaluation of [(18)F]DiFA and its analogs as novel hypoxia positron emission tomography and [(18)F]FMISO as the standard. Nucl Med Biol 70:39–45

Download references


Italian Association for Cancer Research (Grant IG 2014 Id.1524; EudraCT: 2015–000679-28).


This study did not receive any funding.

Author information

NQ, RL: literature search, literature review, manuscript writing, manuscript editing, content planning; PM, PG, DAP: literature search, literature review, manuscript writing; MB, GA, MP: manuscript editing, content planning.

Correspondence to Priscilla Guglielmo.

Ethics declarations

Conflict of interest

Quartuccio N, Laudicella R, Mapelli P, Guglielmo P, Pizzuto DA, Boero M, Arnone G, Picchio M declare no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quartuccio, N., Laudicella, R., Mapelli, P. et al. Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin Transl Imaging 8, 11–20 (2020). https://doi.org/10.1007/s40336-020-00358-0

Download citation


  • PET
  • Glioma
  • Hypoxia
  • FAZA
  • ATSM
  • MRI