Clinical and Translational Imaging

, Volume 3, Issue 2, pp 123–131 | Cite as

Dual-tracer imaging of malignant bone involvement using PET

  • Farshad MoradiEmail author
  • Andrei Iagaru
Review Article


Despite widespread use of PET/CT in oncological imaging, bone scintigraphy has remained the mainstay of imaging osseous involvement in certain malignancies such as advanced breast cancer. Osseous lesions and particularly blastic metastases may have low or variable uptake on 18F-FDG PET. 18F-fluoride PET has higher sensitivity and superior resolution and specificity compared to bone scintigraphy, but the associated cost has hindered its clinical application. Dual-tracer imaging using combined 18F-fluoride and 18F-FDG is an alternative cost-effective approach for imaging both osseous and extra-osseous involvement using PET/CT as a single PET/CT examination. Here, we discuss the technical aspects and clinical applications of combined 18F-fluoride and 18F-FDG PET/CT and review the data regarding feasibility and validation for this approach and it’s potential for improving patient care.


18F-fluoride 18F-FDG PET/CT Multi-tracer imaging Bone neoplasm 


Conflict of interest

Farshad Moradi and Andrei Iagaru declare no conflicts of interest.

Compliance with ethics guidelines

This article does not contain any studies with human or animal subjects performed by the any of the authors.


  1. 1.
    Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31(1):28–49CrossRefPubMedGoogle Scholar
  2. 2.
    Fruhling J, Verbist A, Balikdjian D (1986) Which diphosphonate for routine bone scintigraphy (MDP, HDP or DPD)? Nucl Med Commun 7(6):415–425CrossRefPubMedGoogle Scholar
  3. 3.
    Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med Off Publ Soc Nucl Med 46(8):1356–1367Google Scholar
  4. 4.
    Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med Off Publ Soc Nucl Med 49(1):68–78. doi: 10.2967/jnumed.106.037200 Google Scholar
  5. 5.
    Hoh CK, Hawkins RA, Dahlbom M, Glaspy JA, Seeger LL, Choi Y, Schiepers CW, Huang SC, Satyamurthy N, Barrio JR et al (1993) Whole body skeletal imaging with [18F]fluoride ion and PET. J Comput Assist Tomogr 17(1):34–41CrossRefPubMedGoogle Scholar
  6. 6.
    Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of 99mTc MDP scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 14(2):252–259. doi: 10.1007/s11307-011-0486-2 CrossRefGoogle Scholar
  7. 7.
    Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A, Lata S (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31(4):262–269. doi: 10.1007/s11604-013-0179-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Ben-Haim S, Israel O (2009) Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):408–415. doi: 10.1053/j.semnuclmed.2009.05.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med Off Publ Soc Nucl Med 47(2):287–297Google Scholar
  10. 10.
    Yang HL, Liu T, Wang XM, Xu Y, Deng SM (2011) Diagnosis of bone metastases: a meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21(12):2604–2617. doi: 10.1007/s00330-011-2221-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K (2013) PET/CT in oncology: current status and perspectives. Curr Radiol Rep 1:177–190. doi: 10.1007/s40134-013-0016-x CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chua S, Gnanasegaran G, Cook GJ (2009) Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):416–430. doi: 10.1053/j.semnuclmed.2009.07.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Chang MC, Chen JH, Liang JA, Lin CC, Yang KT, Cheng KY, Yeh JJ, Kao CH (2012) Meta-analysis: comparison of F-18 fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastasis in patients with lung cancer. Acad Radiol 19(3):349–357. doi: 10.1016/j.acra.2011.10.018 CrossRefPubMedGoogle Scholar
  14. 14.
    Qu X, Huang X, Yan W, Wu L, Dai K (2012) A meta-analysis of (1)(8)FDG-PET-CT, (1)(8)FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol 81(5):1007–1015. doi: 10.1016/j.ejrad.2011.01.126 CrossRefPubMedGoogle Scholar
  15. 15.
    Peterson JJ, Kransdorf MJ, O’Connor MI (2003) Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res 415(Suppl):S120–S128. doi: 10.1097/01.blo.0000093051.96273.7c CrossRefPubMedGoogle Scholar
  16. 16.
    Fujimoto R, Higashi T, Nakamoto Y, Hara T, Lyshchik A, Ishizu K, Kawashima H, Kawase S, Fujita T, Saga T, Togashi K (2006) Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 20(6):399–408CrossRefPubMedGoogle Scholar
  17. 17.
    Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, Takahashi N, Honda H (2005) Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 19(7):573–579CrossRefPubMedGoogle Scholar
  18. 18.
    Jadvar H (2012) Molecular imaging of prostate cancer: PET radiotracers. AJR Am J Roentgenol 199(2):278–291. doi: 10.2214/AJR.12.8816 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Ota N, Kato K, Iwano S, Ito S, Abe S, Fujita N, Yamashiro K, Yamamoto S, Naganawa S (2014) Comparison of (1)(8)F-fluoride PET/CT, (1)(8)F-FDG PET/CT and bone scintigraphy (planar and SPECT) in detection of bone metastases of differentiated thyroid cancer: a pilot study. Br J Radiol 87(1034):20130444. doi: 10.1259/bjr.20130444 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Schirrmeister H (2007) Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 45(4):669–676. doi: 10.1016/j.rcl.2007.05.007 CrossRefPubMedGoogle Scholar
  21. 21.
    Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N (2008) Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med 33(2):97–101. doi: 10.1097/RLU.0b013e31815f23b7 CrossRefPubMedGoogle Scholar
  22. 22.
    Balci TA, Koc ZP, Komek H (2012) Bone scan or (18)f-fluorodeoxyglucose positron emission tomography/computed tomography; which modality better shows bone metastases of breast cancer? Breast Care 7(5):389–393. doi: 10.1159/000341559 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Hahn S, Heusner T, Kummel S, Koninger A, Nagarajah J, Muller S, Boy C, Forsting M, Bockisch A, Antoch G, Stahl A (2011) Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiol 52(9):1009–1014. doi: 10.1258/ar.2011.100507 CrossRefPubMedGoogle Scholar
  24. 24.
    Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, Suzuki T, Nishimura T (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32(11):1253–1258. doi: 10.1007/s00259-005-1842-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Podoloff DA, Ball DW, Ben-Josef E, Benson AB 3rd, Cohen SJ, Coleman RE, Delbeke D, Ho M, Ilson DH, Kalemkerian GP, Lee RJ, Loeffler JS, Macapinlac HA, Morgan RJ Jr, Siegel BA, Singhal S, Tyler DS, Wong RJ (2009) NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Cancer Netw JNCCN 7(Suppl 2):S1–S26Google Scholar
  26. 26.
    Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med Off Publ Ital Assoc Nucl Med 45(1):27–37Google Scholar
  27. 27.
    Sahin E, Zincirkeser S, Baris A, Elboga U (2014) Is (99m) Tc-MDP whole body bone scintigraphy adjuvant to (18)F-FDG-PET for the detection of skeletal metastases? J BU ON Off J Balk Union Oncol 19(1):291–296Google Scholar
  28. 28.
    Hoegerle S, Juengling F, Otte A, Altehoefer C, Moser EA, Nitzsche EU (1998) Combined FDG and [F-18]fluoride whole-body PET: a feasible two-in-one approach to cancer imaging? Radiology 209(1):253–258. doi: 10.1148/radiology.209.1.9769840 CrossRefPubMedGoogle Scholar
  29. 29.
    Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F, Mievis F, Aerts J, Waltregny D, Jerusalem G, Hustinx R (2011) 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun 32(3):168–176. doi: 10.1097/MNM.0b013e3283412ef5 CrossRefPubMedGoogle Scholar
  30. 30.
    Tateishi U, Morita S, Taguri M, Shizukuishi K, Minamimoto R, Kawaguchi M, Murano T, Terauchi T, Inoue T, Kim EE (2010) A meta-analysis of 18F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med 24(7):523–531. doi: 10.1007/s12149-010-0393-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med Off Publ Soc Nucl Med 47(5):885–895Google Scholar
  32. 32.
    Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med Off Publication Soc Nucl Med 51(11):1813–1820. doi: 10.2967/jnumed.110.082263 Google Scholar
  33. 33.
    Slack NH, Karr JP, Chu TM, Murphy GP (1980) An assessment of bone scans for monitoring osseous metastases in patients being treated for prostate carcinoma. Prostate 1(2):259–270CrossRefPubMedGoogle Scholar
  34. 34.
    Fogelman I (2011) The flare phenomenon: still learning after 35 years. Eur J Nucl Med Mol Imaging 38(1):5–6. doi: 10.1007/s00259-010-1609-8 CrossRefPubMedGoogle Scholar
  35. 35.
    Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol 186(6):1783–1786. doi: 10.2214/AJR.05.0225 CrossRefPubMedGoogle Scholar
  36. 36.
    Kazama T, Swanston N, Podoloff DA, Macapinlac HA (2005) Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32(12):1406–1411. doi: 10.1007/s00259-005-1890-0 CrossRefPubMedGoogle Scholar
  37. 37.
    Chhabra A, Batra K, Makler PT Jr (2006) Obscured bone metastases after administration of hematopoietic factor on FDG-PET. Clin Nucl Med 31(6):328–330. doi: 10.1097/01.rlu.0000218575.91735.5f CrossRefPubMedGoogle Scholar
  38. 38.
    Iagaru A, Mittra E, Mosci C, Dick DW, Sathekge M, Prakash V, Iyer V, Lapa P, Isidoro J, de Lima JM, Gambhir SS (2013) Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Medicine Off Publ Soc Nucl Med 54(2):176–183. doi: 10.2967/jnumed.112.108803 Google Scholar
  39. 39.
    Harisankar CN, Agrawal K, Bhattacharya A, Mittal BR (2014) F-18 fluoro-deoxy-glucose and F-18 sodium fluoride cocktail PET/CT scan in patients with breast cancer having equivocal bone SPECT/CT. Indian J Nucl Med IJNM Official J Soc Nucl Med India 29(2):81–86. doi: 10.4103/0972-3919.130287 Google Scholar
  40. 40.
    Richmond K, McLean N, Rold T, Szczodroski A, Dresser T, Hoffman T (2011) Optimizing a F-18 NaF and FDG cocktail as a preclinical cancer screening tool for molecular imaging. J Nucl Med Off Publ Soc Nucl Med 52(Supplement 1):2455Google Scholar
  41. 41.
    Even-Sapir E (2014) 18F-Fluoride PET/computed tomography imaging. PET Clin 9(3):277–285. doi: 10.1016/j.cpet.2014.03.003 CrossRefPubMedGoogle Scholar
  42. 42.
    Iagaru A, Mittra E, Yaghoubi SS, Dick DW, Quon A, Goris ML, Gambhir SS (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med Off Publ Soc Nucl Med 50(4):501–505. doi: 10.2967/jnumed.108.058339 Google Scholar
  43. 43.
    Ohnona J, Michaud L, Balogova S, Paycha F, Nataf V, Chauchat P, Talbot JN, Kerrou K (2013) Can we achieve a radionuclide radiation dose equal to or less than that of 99mTc-hydroxymethane diphosphonate bone scintigraphy with a low-dose 18F-sodium fluoride time-of-flight PET of diagnostic quality? Nucl Med Commun 34(5):417–425. doi: 10.1097/MNM.0b013e32835fcd9d CrossRefPubMedGoogle Scholar
  44. 44.
    Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE (2009) Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 11(2):118–122. doi: 10.1007/s11307-008-0177-9 CrossRefGoogle Scholar
  45. 45.
    Kurdziel KA, Shih JH, Apolo AB, Lindenberg L, Mena E, McKinney YY, Adler SS, Turkbey B, Dahut W, Gulley JL, Madan RA, Landgren O, Choyke PL (2012) The kinetics and reproducibility of 18F-sodium fluoride for oncology using current PET camera technology. J Nucl Med Off Publ Soc Nucl Med 53(8):1175–1184. doi: 10.2967/jnumed.111.100883 Google Scholar
  46. 46.
    Graham MM, Badawi RD, Wahl RL (2011) Variations in PET/CT methodology for oncologic imaging at US academic medical centers: an imaging response assessment team survey. J Nucl Med Off Publ Soc Nucl Med 52(2):311–317. doi: 10.2967/jnumed.109.074104 Google Scholar
  47. 47.
    Win AZ, Aparici CM (2014) Factors affecting uptake of NaF-18 by the normal skeleton. J Clin Med Res 6(6):435–442. doi: 10.14740/jocmr1901w PubMedCentralPubMedGoogle Scholar
  48. 48.
    Win AZ, Aparici CM (2014) Normal SUV values measured from NaF18-PET/CT bone scan studies. PLoS One 9(9):e108429. doi: 10.1371/journal.pone.0108429 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, Broinger G, Stoiber F, Foglman I, Langsteger W (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35(10):1766–1774. doi: 10.1007/s00259-008-0788-z CrossRefPubMedGoogle Scholar
  50. 50.
    Altini C, Niccoli Asabella A, De Luca R, Fanelli M, Caliandro C, Quartuccio N, Rubini D, Cistaro A, Montemurro S, Rubini G (2014) Comparison of F-FDG PET/CT methods of analysis for predicting response to neoadjuvant chemoradiation therapy in patients with locally advanced low rectal cancer. Abdom Imaging. doi: 10.1007/s00261-014-0277-8 PubMedGoogle Scholar
  51. 51.
    Shamim SA, Kumar R, Shandal V, Halanaik D, Kumar G, Bal CS, Malhotra A (2011) FDG PET/CT evaluation of treatment response in patients with recurrent colorectal cancer. Clin Nucl Med 36(1):11–16. doi: 10.1097/RLU.0b013e3181feeb48 CrossRefPubMedGoogle Scholar
  52. 52.
    Onishi Y, Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto K, Yoshikawa T, Matsumoto S, Maniwa Y, Nishimura Y, Sugimura K (2011) Non-small cell carcinoma: comparison of postoperative intra- and extrathoracic recurrence assessment capability of qualitatively and/or quantitatively assessed FDG-PET/CT and standard radiological examinations. Eur J Radiol 79(3):473–479. doi: 10.1016/j.ejrad.2010.04.027 CrossRefPubMedGoogle Scholar
  53. 53.
    Schmidt M, Schmalenbach M, Jungehulsing M, Theissen P, Dietlein M, Schroder U, Eschner W, Stennert E, Schicha H (2004) 18F-FDG PET for detecting recurrent head and neck cancer, local lymph node involvement and distant metastases. Comparison of qualitative visual and semiquantitative analysis. Nukl Nucl Med 43(3):91–101. doi: 10.1267/NUKL04030091 Google Scholar
  54. 54.
    Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, Schwartz LH, Zucca E, Fisher RI, Trotman J, Hoekstra OS, Hicks RJ, O’Doherty MJ, Hustinx R, Biggi A, Cheson BD (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol Off J Am Soc Clin Oncol. doi: 10.1200/JCO.2013.53.5229 Google Scholar
  55. 55.
    Li Y, Schiepers C, Lake R, Dadparvar S, Berenji GR (2012) Clinical utility of 18F-fluoride PET/CT in benign and malignant bone diseases. Bone 50(1):128–139. doi: 10.1016/j.bone.2011.09.053 CrossRefPubMedGoogle Scholar
  56. 56.
    Minamimoto R, Mosci C, Jamali M, Mittra E, Gambhir SS, Iagaru A (2014) Observed standardized uptake values in normal tissues and malignant lesions on combined 18F-NaF/18F-FDG PET/CT. J Nucl Med Off Publ Soc Nucl Med 55(Supplement 1):1638Google Scholar
  57. 57.
    Jackson TA, Mosci C, Mittra E, Quon A, Ganjoo K, Gambhir SS, Iagaru A (2014) Combined 18F NaF and 18F FDG PET/CT evaluation of sarcoma patients. Clin Nucl Med 39(6):582–591Google Scholar
  58. 58.
    Sampath SC, Sampath SC, Mosci C, Lutz AM, Willmann JK, Mittra ES, Gambhir SS, Iagaru A (2014) Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone. Clin Nucl Med. doi: 10.1097/RLU.0000000000000560 Google Scholar
  59. 59.
    Kadrmas DJ, Hoffman JM (2013) Methodology for quantitative rapid multi-tracer PET tumor characterizations. Theranostics 3(10):757–773. doi: 10.7150/thno.5201 CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Cowell DC, Taylor WH (1981) Ionic fluoride: a study of its physiological variation in man. Ann Clin Biochem 18(Pt 2):76–83CrossRefPubMedGoogle Scholar
  61. 61.
    Schiffl H, Binswanger U (1982) Renal handling of fluoride in healthy man. Renal Physiol 5(4):192–196PubMedGoogle Scholar
  62. 62.
    Waterhouse C, Taves D, Munzer A (1980) Serum inorganic fluoride: changes related to previous fluoride intake, renal function and bone resorption. Clin Sci 58(2):145–152PubMedGoogle Scholar
  63. 63.
    Qiao H, Bai J, Chen Y, Tian J (2008) Modeling the excretion of FDG in human kidneys using dynamic PET. Comput Biol Med 38(11–12):1171–1176. doi: 10.1016/j.compbiomed.2008.09.006 CrossRefPubMedGoogle Scholar
  64. 64.
    Avery R, Kuo PH (2013) 18F sodium fluoride PET/CT detects osseous metastases from breast cancer missed on FDG PET/CT with marrow rebound. Clin Nucl Med 38(9):746–748. doi: 10.1097/RLU.0b013e3182996138 CrossRefPubMedGoogle Scholar
  65. 65.
    Li XF, Huang T, Jiang H, Wang X, Shen B, Wang X, Ng CK, Postel GC, Civelek AC (2013) Combined injection of 18F-fluorodeoxyglucose and 3′-Deoxy-3′-18F-fluorothymidine PET achieves more complete identification of viable lung cancer cells in mice and patients than individual radiopharmaceutical: a proof-of-concept study. Transl Oncol 6(6):775–783CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Guo J, Guo N, Lang L, Kiesewetter DO, Xie Q, Li Q, Eden HS, Niu G, Chen X (2014) 18F-Alfatide II and 18F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J Nucl Med Off Publ Soc Nucl Med 55(1):154–160. doi: 10.2967/jnumed.113.122069 Google Scholar
  67. 67.
    Naswa N, Sharma P, Gupta SK, Karunanithi S, Reddy RM, Patnecha M, Lata S, Kumar R, Malhotra A, Bal C (2014) Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary? Clin Nucl Med 39(1):e27–e34. doi: 10.1097/RLU.0b013e31827a216b CrossRefPubMedGoogle Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2015

Authors and Affiliations

  1. 1.Nuclear Medicine and Molecular Imaging, Department of RadiologyStanford University Medical CenterStanfordUSA

Personalised recommendations