Advertisement

A look into the past, present and future potential distributions of Talinopsis frutescens, a North American endemic lineage closely related to Cactaceae

  • Mónica I. Miguel-Vázquez
  • Yasser S. López De Olmos R
  • Gilberto OcampoEmail author
Article
  • 4 Downloads

Abstract

Talinopsis frutescens (Anacampserotaceae, a family that is close related to Cactaceae) is a succulent species endemic to North America. The aim of this study was to explore, using Ecological Niche Modeling (ENM), changes in potential distribution ranges considering different climate scenarios: past conditions during the Last Inter Glacial (LIG) and the Last Glacial Maximum (LGM), the present and projections for 2070 (RCP 2.6 to 8.5). A pattern of contraction is observed during the LIG, which agrees with other studies focused in species from arid environments. This pattern was followed by a migration towards the south during the LGM and a possible recent expansion to the north as is observed in the present scenario. All future projections show the same contraction and fragmentation patterns, resulting in three discontinuous areas: the northern part of the Chihuahuan Desert, the southern-central part of the Mexican Plateau, and the smallest one in the Tehuacán-Cuicatlán Valley. Our projections for future scenarios agree with other studies and support that global climate change tends to alter the current distribution of arid environment species.

Keywords

Anacampserotaceae Caryophyllales ecological niche modeling succulent plants potential distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was partially funded by the National Council of Science and Technology, Mexico (PhD scholarship 436041) and the Cactus and Succulent Society of America grant, both provided to the first author. The research was supported by the Educational Professional Development Program (#UAA-PTC-169) granted to the corresponding author by the Public Education Department and the Autonomous University of Aguascalientes, Mexico.

References

  1. Angulo D F, Amarilla L D, Anton A M, et al. 2017. Colonization in North American arid lands: the journey of agarito (Berberis trifoliolata) revealed by multilocus molecular data and packrat midden fossil remains. PLoS ONE, 12(2): e0168933.CrossRefGoogle Scholar
  2. Ballesteros-Barrera C. 2008. Effect of global climate change on the distribution of Chihuahuan Desert species. PhD Dissertation. México: National Autonomous University of Mexico. (in Spanish)Google Scholar
  3. Cevallos-Ferriz S R S, González-Torres E A, Calvillo-Canadell L. 2012. Paleobotanical and geological perspective of the biodiversity in Mexico. Acta Botanica Mexicana, 100: 317–350. (in Spanish)CrossRefGoogle Scholar
  4. Dávila P, del Coro Arizmendi M, Valiente-Banuet A, et al. 2002. Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodiversity and Conservation, 11(3): 421–442.CrossRefGoogle Scholar
  5. Dávila, P, Téllez O, Lira R. 2013. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosystems, 147(2): 376–386.CrossRefGoogle Scholar
  6. De-Nova J A, Sánchez-Reyes L L, Eguiarte L E, et al. 2018. Recent radiation and dispersal of an ancient lineage: The case of Fouquieria (Fouquiericeae, Ericales) in North American deserts. Molecular Phylogenetics and Evolution, 126: 92–104.CrossRefGoogle Scholar
  7. Duran K L, Lowrey T K, Parmenter R R, et al. 2005. Genetic diversity in Chihuahuan Desert populations of creosotebush (Zygophyllaceae: Larrea tridentata). American Journal of Botany, 92(4): 722–729.CrossRefGoogle Scholar
  8. Ferrari L, López-Martínez M, Aguirre-Díaz G, et al. 1999. Space-time patterns of Cenozoic arc volcanism in central Mexico: from the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology, 27(4): 303–306.CrossRefGoogle Scholar
  9. Gent P R, Danabasoglu G, Donner L J, et al. 2011. The community climate system model version 4. Journal of Climate, 24(19): 4973–4991.CrossRefGoogle Scholar
  10. Gómez-Tuena A, Orozco-Esquivel M T, Ferrari L. 2007. Igneous petrogenesis of the Trans-Mexican Volcanic Belt. Geological Society of America, 422: 129–181.Google Scholar
  11. Hafner D J, Riddle B R. 2011. Boundaries and barriers of North American warm deserts: an evolutionary perspective. In: Upchurch P, McGowan A J, Slater C S C. Palaeogeography and Palaeobiogeography: Biodiversity in Space and Time. Boca Raton: Taylor and Francis Group, 74–101.Google Scholar
  12. Hernández-Ledesma P, Berendsohn W G, Borsch T, et al. 2015. A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia, 45(3): 281–383.CrossRefGoogle Scholar
  13. Hijmans R J, Cameron S E, Parra J L, et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965–1978.CrossRefGoogle Scholar
  14. Hoyt C. 2002. The Chihuahuan Desert: diversity at risk. Endangered Species Bulletin, 27(2): 16–17.Google Scholar
  15. Hunter K L, Betancourt J L, Riddle B R, et al. 2001. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata. Global Ecology and Biogeography, 10(5): 521–533.CrossRefGoogle Scholar
  16. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996.Google Scholar
  17. Kelly A E, Goulden M L. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33): 11823–11826.CrossRefGoogle Scholar
  18. Kiger R W. 2003. Talinopsis. In: Flora of North America Editorial Committee, Flora of North America North of Mexico, Vol. 4. Magnoliophyta: Caryophyllidae, Pt. 1. New York: Oxford University Press, 501–502.Google Scholar
  19. Levins R. 1968. Evolution in Changing Environments. Princeton: Princeton University Press, 132.Google Scholar
  20. Loera I, Ickert-Bond S M, Sosa V. 2017. Pleistocene refugia in the Chihuahuan Desert: the phylogeographic and demographic history of the gymnosperm Ephedra compacta. Journal of Biogeography, 44(12): 2706–2716.CrossRefGoogle Scholar
  21. Metcalfe S E. 2006. Late quaternary environments of the northern deserts and Central Transvolcanic Belt of Mexico. Annals of the Missouri Botanical Garden, 93(2): 258–273.CrossRefGoogle Scholar
  22. Miguel-Vázquez M I, Ocampo G. 2017. Knowing more about Talinopsis frutescens (arroyo fameflower) a North American endemic succulent species. Cactus and Succulent Journal, 89(2): 88–91.CrossRefGoogle Scholar
  23. Morafka D J. 1977. A Biogeographical Analysis of the Chihuahuan Desert through its Herpetofauna. The Hague: Dr. W. Junk B.V., 321.CrossRefGoogle Scholar
  24. Morrone J J. 2005. Toward a synthesis of Mexican biogeography. Mexican Journal of Biodiversity, 76(2): 207–252. (in Spanish)Google Scholar
  25. Nakazato T, Warren D L, Moyle L C. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97(4): 680–693.CrossRefGoogle Scholar
  26. Nason J D, Hamrick J L, Fleming T H. 2002. Historical vicariance and postglacial colonization effects on the evolution of genetic structure in Lophocereus, a Sonoran Desert columnar cactus. Evolution 56(11): 2214–2226.CrossRefGoogle Scholar
  27. Ocampo G, Columbus J T. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. American Journal of Botany, 97(11): 1827–1847.CrossRefGoogle Scholar
  28. Ocampo G. 2011. Anacampserotaceae. Flora del Valle de Tehuacán-Cuicatlán, 84: 1–12.Google Scholar
  29. Otto-Bliesner B L, Marshall S J, Overpeck J T, et al. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768): 1751–1753.CrossRefGoogle Scholar
  30. Phillips S J, Anderson R P, Dudík M, et al. 2017. Opening the black box: an open-source release of Maxent. Ecography, 40(7): 887–893.CrossRefGoogle Scholar
  31. Rolando A. 1990. On niche breadth and related concepts. Italian Journal of Zoology, 57(2): 145–148.Google Scholar
  32. Ruiz-Sanchez E, Rodriguez-Gomez F, Sosa V. 2012. Refugia and geographic barriers of populations of the desert poppy, Hunnemannia fumariifolia (Papaveraceae). Organisms Diversity and Evolution, 12:133–143.CrossRefGoogle Scholar
  33. Rzedowski G C. 2005. Talinopsis. In: Rzedowski G C, Rzedowski J. Phanerogamic Flora of the Valley of Mexico. Pátzcuaro: Institute of Ecology, A. C., National Commission for the Knowledge and Use of Biodiversity, 147. (in Spanish)Google Scholar
  34. Rzodowski J. 2006. Vegetation of Mexico (1st ed.). México: National Commission for the Knowledge and Use of Biodiversity. 504. (in Spanish)Google Scholar
  35. Samour-Nieva O R. 2012. Nurse effect of Larrea tridentata and its impact on the diversity of perennial plant species in the Potosino plateau region, Mexico. Msc Thesis. Mexico: Potosino Institute of Scientific and Technological Research, A.C. (in Spanish)Google Scholar
  36. Scheinvar E, Gámez N, Castellanos-Morales G, et al. 2017. Neogene and Pleistocene history of Agave lechuguilla in the Chihuahuan Desert. Journal of Biogeography, 44(2): 322–334.CrossRefGoogle Scholar
  37. Shreve F. 1942. The desert vegetation of North America. The Botanical Review, 8: 195–246.CrossRefGoogle Scholar
  38. Sosa V, De-Nova J A, Vásquez-Cruz M. 2018. Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism. Journal of Systematics and Evolution, 56 (5): 523–536.CrossRefGoogle Scholar
  39. Valiente-Banuet A, Solis-Rojas L, Dávila P, et al. 2009. Guide of the vegetation of the Tehuacán-Cuicatlán Valley (1st ed.). Mexico: National Autonomous University of Mexico, 208. (in Spanish)Google Scholar
  40. Vásquez-Cruz M, Sosa V. 2016. New insights on the origin of the woody flora of the Chihuahuan Desert: The case of Lindleya, American Journal of Botany, 103(9): 1694–1707.CrossRefGoogle Scholar
  41. Walker J F, Yang Y, Feng T, et al. 2018. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. American Journal of Botany, 105(3): 446–462.CrossRefGoogle Scholar
  42. Warren D L, Glor R E, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11): 2868–2883.CrossRefGoogle Scholar
  43. Wilson J S, Pitts J P. 2010. Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography: Earth and Environment, 34(4): 419–441.CrossRefGoogle Scholar

Copyright information

© Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mónica I. Miguel-Vázquez
    • 1
  • Yasser S. López De Olmos R
    • 2
  • Gilberto Ocampo
    • 1
    Email author
  1. 1.Department of Biology, Basic Sciences CenterAutonomous University of AguascalientesAguascalientesMexico
  2. 2.Biological and Health Sciences PhD Program, Department of Biology, Biological and Health Sciences DivisionAutonomous Metropolitan UniversityIztapalapaMexico

Personalised recommendations