Acta Geodaetica et Geophysica

, Volume 53, Issue 3, pp 415–438 | Cite as

Upper mantle xenoliths as sources of geophysical information: the Perşani Mts. area as a case study

  • István Kovács
  • Levente Patkó
  • György Falus
  • László Előd Aradi
  • Gyöngyvér Szanyi
  • Zoltán Gráczer
  • Csaba Szabó
Original Study


The aim is to give an overview on how geochemical and petrological data, obtained from upper mantle xenoliths, could be utilized to provide information on the geophysical properties of the upper mantle at their origin. First we demonstrate how a tentative lithospheric column may be constructed based on the equilibrium temperature of upper mantle xenoliths and the area specific depth-temperature curves. Then it is described how the speed of seismic waves at the given pressure and temperature conditions could be calculated from the modal composition and geochemistry of major rock forming minerals of upper mantle xenoliths (e.g. olivine and orthopyroxene). It is also discussed how the lattice preferred orientation of minerals in upper mantle xenoliths provides information on the seismic anisotropy of the upper mantle, and how this information could be used to calculate the orientation and thickness of the anisotropic layer in the upper mantle if one anisotropic layer is assumed. Structural hydroxyl (or most commonly referred to as ‘water’) incorporated in nominally anhydrous minerals plays a critical role in determining the electrical conductivity and rheology of the upper mantle. Finally, it is presented how electrical conductivity and effective viscosity of the upper mantle could be approximated based on the structural hydroxyl content in olivine, the most abundant mineral constituent of the upper mantle. Our study area, the Perşani Mountains is situated in the Carpathian Bend area (Romania) which is geologically one of the most active areas in Europe. Abundant upper mantle xenoliths from the Perşani Mountains (Eastern Carpathians) will serve as examples how meaningful geophysical information can be obtained for the upper mantle. Furthermore, it is shown how these pieces of information may be utilized in interpreting geophysical and geodynamic challenges of this area.


Upper mantle Xenoliths Geophysics Rheology Perşani Mts 



We thank the Topo-Transylvania community for the motivation overs the past years, especially Viktor Wesztergom, Eszter Szűcs and Sierd Cloetingh for their continuous support and motivation. We are grateful to Anna Maria Fioretti and Raúl Carampin for their help with EMPA analyses in Padua, Italy, and also to Bernardo Cesare for facilitation. Luca Fedele is thanked for helping with geochemical analyses at Virginia Tech. We also owe thanks to Robert J. Bodnar, who facilitated the measurements at Virginia Tech. This study was financially supported by a Bolyai Postdoctoral Fellowship program to IK, and a Lendület Research Grant to the Pannon LitH2Oscope Research group and an NKFIH K128122 grant of the Innovation, Research and Development Office. This work was completed in the ELTE Excellence Program (783-3/2018/FEKUTSRAT) supported by the Hungarian Ministry of Human Capacities. This research was supported by the Hungarian Science Foundation (OTKA, 78425) to Cs. Szabó. This is the 93d publication of the Lithosphere Fluid Research Lab (Eötvös University, Hungary).

Conflict of interest

All authors declare that there is no conflict of interest regarding the present manuscript.

Supplementary material

40328_2018_231_MOESM1_ESM.xls (222 kb)
Supplementary material 1 (XLS 222 kb)
40328_2018_231_MOESM2_ESM.xlsx (63 kb)
Supplementary material 2 (XLSX 63 kb)
40328_2018_231_MOESM3_ESM.xlsx (22 kb)
Supplementary material 3 (XLSX 21 kb)
40328_2018_231_MOESM4_ESM.xlsx (14 kb)
Supplementary material 4 (XLSX 13 kb)


  1. Ádám A, Szarka L, Novák A, Wesztergom V (2017) Key results on deep electrical conductivity anomalies in the Pannonian Basin (PB), and their geodynamic aspects. Acta Geod Geoph 52(2):205–228CrossRefGoogle Scholar
  2. Aradi LE, Hidas K, Kovács IJ, Tommasi A, Klébesz R, Garrido CJ, Szabó C (2017) Fluid-enhanced annealing in the subcontinental lithospheric mantle beneath the westernmost margin of the Carpathian–Pannonian extensional basin system. Tectonics 36:2987–3011CrossRefGoogle Scholar
  3. Artemieva IM (2009) The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109(1):23–46CrossRefGoogle Scholar
  4. Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58(1–4):165–180CrossRefGoogle Scholar
  5. Baptiste V, Tommasi A (2014) Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth 5(1):45CrossRefGoogle Scholar
  6. Ben Ismail W, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296(1–2):145–157CrossRefGoogle Scholar
  7. Berkesi M, Guzmics T, Szabó C, Dubessy J, Bodnar RJ, Hidas K, Ratter K (2012) The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth Planet Sci Lett 331:8–20CrossRefGoogle Scholar
  8. Berryman JG (1995) Mixture theories for rock properties. Rock Phys Phase Relat Handb Phys Constants 3:205–228CrossRefGoogle Scholar
  9. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378CrossRefGoogle Scholar
  10. Chalot-Prat F, Arnold M (1999) Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions in the upper mantle: a natural case study from Romanian mantle xenoliths. Lithos 46(4):627–659CrossRefGoogle Scholar
  11. Chalot-Prat F, Boullier AM (1997) Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania): new evidence from trace element geochemistry. Contrib Miner Petrol 129(4):284–307CrossRefGoogle Scholar
  12. Chalot-Prat F, Gîrbacea R (2000) Partial delamination of continental mantle lithosphere, uplift-related crust–mantle decoupling, volcanism and basin formation: a new model for the Pliocene-Quaternary evolution of the southern East-Carpathians, Romania. Tectonophysics 327(1–2):83–107CrossRefGoogle Scholar
  13. Ciulavu D, Dinu C, Szakács A, Dordea D (2000) Neogene kinematics of the Transylvanian basin (Romania). AAPG Bull 84(10):1589–1615Google Scholar
  14. Corver MP, Doust H, van Wees JD, Cloetingh S (2011) Source-rock maturation characteristics of symmetric and asymmetric grabens inferred from integrated analogue and numerical modeling: the southern Viking Graben (North Sea). Mar Pet Geol 28(4):921–935CrossRefGoogle Scholar
  15. Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297(1–4):51–71CrossRefGoogle Scholar
  16. Dai L, Karato SI (2009) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad Ser B 85(10):466–475CrossRefGoogle Scholar
  17. Dixon JE, Dixon TH, Bell DR, Malservisi R (2004) Lateral variation in upper mantle viscosity: role of water. Earth Planet Sci Lett 222(2):451–467CrossRefGoogle Scholar
  18. Downes H (1997) Shallow continental lithospheric mantle heterogeneity—petrological constraints. In: Upper mantle heterogeneities from active and passive seismology. Springer, Dordrecht, pp 295–308CrossRefGoogle Scholar
  19. Downes H, Bodinier J, Thirlwall M, Lorand J-P, Fabries J (1991) REE and Sr–Nd isotopic geochemistry of eastern Pyrenean peridotite massifs: sub-continental lithospheric mantle modified by continental magmatism. J Petrol Volume Special_Volume(2):97–115CrossRefGoogle Scholar
  20. Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Miner Petrol 109(3):340–354CrossRefGoogle Scholar
  21. Embey-Isztin A (1976) Amphibolite/lherzolite composite xenolith from Szigliget, north of the Lake Balaton, Hungary. Earth Planet Sci Lett 31(2):297–304CrossRefGoogle Scholar
  22. Falus G (2004) Microstructural analysis of upper mantle peridotites: their application in understanding mantle processes during the formation of the Intra-Carpathian Basin System. Doctoral dissertation, SZTE, pp 165Google Scholar
  23. Falus G, Szabó Cs, Vaselli O (2000) Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry. Terra Nova 12(6):295–302CrossRefGoogle Scholar
  24. Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272(1):50–64CrossRefGoogle Scholar
  25. Falus G, Tommasi A, Soustelle V (2011) The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions. J Struct Geol 33(11):1528–1540CrossRefGoogle Scholar
  26. Faul UH, Cline CJ, David EC, Berry AJ, Jackson I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237CrossRefGoogle Scholar
  27. Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498(7453):213CrossRefGoogle Scholar
  28. Fillerup MA, Knapp JH, Knapp CC, Raileanu V (2010) Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians. Lithosphere 2(5):333–340CrossRefGoogle Scholar
  29. Fullea J (2017) On joint modelling of electrical conductivity and other geophysical and petrological observables to infer the structure of the lithosphere and underlying upper mantle. Surv Geophys 38(5):963–1004CrossRefGoogle Scholar
  30. Gîrbacea R, Frisch W (1998) Slab in the wrong place: lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. Geology 26(7):611–614CrossRefGoogle Scholar
  31. Hacker BR, Abers GA (2004) Subduction factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst. CrossRefGoogle Scholar
  32. Harangi S, Molnár M, Vinkler AP, Kiss B, Jull AJT, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, eastern-central Europe. Radiocarbon 52(3):1498–1507CrossRefGoogle Scholar
  33. Harangi S, Sági T, Seghedi I, Ntaflos T (2013) Origin of basaltic magmas of Perşani volcanic field, Romania: a combined whole rock and mineral scale investigation. Lithos 180:43–57CrossRefGoogle Scholar
  34. Hidas K, Falus G, Szabó C, Szabó PJ, Kovács I, Földes T (2007) Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton highland volcanic field (Western Hungary). J Geodyn 43(4):484–503CrossRefGoogle Scholar
  35. Hidas K, Guzmics T, Szabó C, Kovács I, Bodnar RJ, Zajacz Z, Nédli Z, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary). Chem Geol 274(1):1–18CrossRefGoogle Scholar
  36. Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144(1–2):93–108CrossRefGoogle Scholar
  37. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226(1–4):333–357CrossRefGoogle Scholar
  38. Huismans RS, Bertotti G, Ciulavu D, Sanders CAE, Cloetingh SAPL, Dinu C (1997) Structural evolution of the Transylvanian Basin (Romania): a sedimentary basin in the bend zone of the Carpathians. Tectonophysics 272(2–4):249–268CrossRefGoogle Scholar
  39. Ismail-Zadeh A, Matenco L, Radulian M, Cloetingh S, Panza G (2012) Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics 530:50–79CrossRefGoogle Scholar
  40. Ivan M, Popa M, Ghica D (2008) SKS splitting observed at Romanian broad-band seismic network. Tectonophysics 462(1–4):89–98CrossRefGoogle Scholar
  41. James DE, Boyd FR, Schutt D, Bell DR, Carlson RW (2004) Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa. Geochem Geophys Geosyst. CrossRefGoogle Scholar
  42. Jones AG, Evans RL, Eaton DW (2009) Velocity–conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds. Lithos 109(1–2):131–143CrossRefGoogle Scholar
  43. Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory‐determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst. CrossRefGoogle Scholar
  44. Karátson D, Wulf S, Veres D, Magyari EK, Gertisser R, Timar-Gabor A, Novothny A, Telbisz T, Szalai Z, Anechitei-Deacu A, Appelt O, Bormann M, Jánosi Cs, Hubay K, Schäbitz F (2016) The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians—a tephrostratigraphic approach for the 51–29 ka BP time interval. J Volcanol Geoth Res 319:29–51CrossRefGoogle Scholar
  45. Klébesz R, Gráczer Z, Szanyi Gy, Liptai N, Kovács I, Patkó L, Pintér Zs, Falus Gy, Wesztergom V, Szabó Cs (2015) Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian Basin). Acta Geod Geoph 50(2):133–149CrossRefGoogle Scholar
  46. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe) 2 SiO 4. Contrib Miner Petrol 123(4):345–357CrossRefGoogle Scholar
  47. Koulakov I, Zaharia B, Enescu B, Radulian M, Popa M, Parolai S, Zschau J (2010) Delamination or slab detachment beneath Vrancea? New arguments from local earthquake tomography. Geochem Geophys Geosyst. CrossRefGoogle Scholar
  48. Kovács I, Falus G, Stuart G, Hidas K, Szabó C, Flower MJ, Hegedűs E, Posgay K, Zilahi-Sebess L (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179CrossRefGoogle Scholar
  49. Kovács I, Lenkey L, Green DH, Fancsik T, Falus G, Kiss J, Orosz L, Angyal J, Vikor Z (2017) The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle. Acta Geod Geoph 52(2):183–204CrossRefGoogle Scholar
  50. Krézsek C, Bally AW (2006) The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: insights in gravitational salt tectonics. Mar Pet Geol 23(4):405–442CrossRefGoogle Scholar
  51. Lankreijer A, Mocanu V, Cloetingh S (1997) Lateral variations in lithosphere strength in the Romanian Carpathians: constraints on basin evolution. Tectonophysics 272(2–4):269–290CrossRefGoogle Scholar
  52. Laumonier M, Farla R, Frost DJ, Katsura T, Marquardt K, Bouvier AS, Baumgartner LP (2017) Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet Sci Lett 463:286–297CrossRefGoogle Scholar
  53. Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res Solid Earth. CrossRefGoogle Scholar
  54. Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260CrossRefGoogle Scholar
  55. Linzer HG, Frisch W, Zweigel P, Girbacea R, Hann HP, Moser F (1998) Kinematic evolution of the Romanian Carpathians. Tectonophysics 297(1–4):133–156CrossRefGoogle Scholar
  56. Liptai N, Patkó L, Kovács IJ, Hidas K, Pintér Z, Jeffries T, Zajacz Z, O’Reilly SY, Griffin WL, Pearson NJ, Szabó C (2017) Multiple metasomatism beneath the Nógrád-Gömör Volcanic Field (Northern Pannonian Basin) revealed by upper mantle peridotite xenoliths. J Petrol 58(6):1107–1144CrossRefGoogle Scholar
  57. Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16(3):385–393CrossRefGoogle Scholar
  58. Martin M, Wenzel F (2006) High-resolution teleseismic body wave tomography beneath SE-Romania-II. Imaging of a slab detachment scenario. Geophys J Int 164(3):579–595CrossRefGoogle Scholar
  59. Matenco L, Bertotti G, Cloetingh SAPL, Dinu C (2003) Subsidence analysis and tectonic evolution of the external Carpathian-Moesian Platform region during Neogene times. Sed Geol 156(1–4):71–94CrossRefGoogle Scholar
  60. McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18CrossRefGoogle Scholar
  61. Mercier J-CC (1985) Ch. 19: olivine and pyroxenes. In: Wenk H-R (ed) Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic Press, New York, pp 407–430CrossRefGoogle Scholar
  62. Mercier J-CC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 6:454–487CrossRefGoogle Scholar
  63. Miller KJ, Montési LG, Zhu WL (2015) Estimates of olivine–basaltic melt electrical conductivity using a digital rock physics approach. Earth Planet Sci Lett 432:332–341CrossRefGoogle Scholar
  64. Mutchler SR, Fedele L, Bodnar RJ (2008) Analysis management system (AMS) for reduction of laser ablation ICPMS data. In: Laser-ablation-ICPMS in the earth sciences: current practices and outstanding issues Mineralogical Association of Canada Quebec, vol 40, pp 318–327Google Scholar
  65. Ni H, Keppler H, Behrens H (2011) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Miner Petrol 162(3):637–650CrossRefGoogle Scholar
  66. Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotites—a review. Compos Struct Dyn Lithosphere-Asthenosphere Syst 16:111–123CrossRefGoogle Scholar
  67. Novella D, Jacobsen B, Weber PK, Tyburczy JA, Ryerson FJ, Du Frane WL (2017) Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle. Sci Rep 7(1):5344CrossRefGoogle Scholar
  68. Padrón-Navarta JA, Hermann J (2017) A subsolidus olivine water solubility equation for the Earth’s upper mantle. J Geophys Res Solid Earth 122(12):9862–9880CrossRefGoogle Scholar
  69. Panaiotu CG, Jicha BR, Singer BS, Ţugui A, Seghedi I, Panaiotu AG, Necula C (2013) 40Ar/39Ar chronology and paleomagnetism of Quaternary basaltic lavas from the Perşani Mountains (East Carpathians). Phys Earth Planet Inter 221:1–14CrossRefGoogle Scholar
  70. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21(1):115–144CrossRefGoogle Scholar
  71. Pécskay Z, Lexa J, Szakács A, Balogh Kad, Seghedi I, Konečný V, Kovács M, Márton M, Kaličiak M, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Rosu E, Žec B (1995) Space and time distribution of Neogene-Queternary volcanism in the Carpatho-Pannonian Region. Acta Vulcanol 7:15–28Google Scholar
  72. Peslier AH, Luhr JF (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242(3–4):302–319CrossRefGoogle Scholar
  73. Peslier AH, Woodland AB, Bell DR, Lazarov M (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467(7311):78CrossRefGoogle Scholar
  74. Pike JN, Schwarzman EC (1977) Classification of textures in ultramafic xenoliths. J Geol 85(1):49–61CrossRefGoogle Scholar
  75. Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181(3–4):103–111CrossRefGoogle Scholar
  76. Popa M, Radulian M, Szakács A, Seghedi I, Zaharia B (2012) New seismic and tomography data in the southern part of the Harghita Mountains (Romania, Southeastern Carpathians): connection with recent volcanic activity. Pure appl Geophys 169(9):1557–1573CrossRefGoogle Scholar
  77. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Electron probe quantitation. Springer US, pp 31–75Google Scholar
  78. Qorbani E, Bokelmann G, Kovács I, Horváth F, Falus G (2016) Deformation in the asthenospheric mantle beneath the Carpathian–Pannonian Region. J Geophys Res Solid Earth 121(9):6644–6657CrossRefGoogle Scholar
  79. Radulian M, Popa M, Cărbunar O, Rogozea M (2008) Seismicity patterns in Vrancea and predictive features. Acta Geod Geophys Hun 43(2–3):163–173CrossRefGoogle Scholar
  80. Ratschbacher L, Linzer HG, Moser F, Strusievicz RO, Bedelean H, Har N, Mogoş PA (1993) Cretaceous to Miocene thrusting and wrenching along the central South Carpathians due to a corner effect during collision and orocline formation. Tectonics 12(4):855–873CrossRefGoogle Scholar
  81. Rawlinson N, Reading AM, Kennett BL (2006) Lithospheric structure of Tasmania from a novel form of teleseismic tomography. J Geophys Res Solid Earth. CrossRefGoogle Scholar
  82. Seghedi I, Szakacs A (1994) Upper pliocene to quaternary basaltic volcanism in the Persani Mountains. Rom J Petrol 76:101–107Google Scholar
  83. Seghedi I, Maţenco L, Downes H, Mason PR, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian–Pannonian Region. Tectonophysics 502(1–2):146–157CrossRefGoogle Scholar
  84. Seghedi I, Popa RG, Panaiotu CG, Szakács A, Pécskay Z (2016) Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania). Bull Volcanol 78(10):69CrossRefGoogle Scholar
  85. Selway K (2014) On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv Geophys 35(1):219–257CrossRefGoogle Scholar
  86. Selway K, Yi J, Karato SI (2014) Water content of the Tanzanian lithosphere from magnetotelluric data: implications for cratonic growth and stability. Earth Planet Sci Lett 388:175–186CrossRefGoogle Scholar
  87. Selway K, Ford H, Kelemen P (2015) The seismic mid-lithosphere discontinuity. Earth Planet Sci Lett 414:45–57CrossRefGoogle Scholar
  88. Sifré D, Gardés E, Massuyeau M, Hashim L, Hier-Majumder S, Gaillard F (2014) Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509(7498):81CrossRefGoogle Scholar
  89. Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24(1):385–432CrossRefGoogle Scholar
  90. Silver PG, Chan WW (1991) Shear wave splitting and subcontinental mantle deformation. J Geophys Res Solid Earth 96(B10):16429–16454CrossRefGoogle Scholar
  91. Stănică D, Stănică M (1993) An electrical resistivity lithospheric model in the Carpathian Orogen from Romania. Phys Earth Planet Inter 81(1–4):99–105CrossRefGoogle Scholar
  92. Stănică M, Stănică D, Marin-Furnica C (1999) The placement of the Trans-European Suture Zone on the Romanian territory by electromagnetic arguments. Earth Planets Space 51(10):1073–1078CrossRefGoogle Scholar
  93. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12(1):1–33CrossRefGoogle Scholar
  94. Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian–Pannonian Region: a review. Tectonophysics 393(1):119–137CrossRefGoogle Scholar
  95. Taylor WR (1998) An experimental test of some geothermometer and geobaro-meter formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie-Abhandlungen 172(2):381–408Google Scholar
  96. Tommasi A, Vauchez A (2015) Heterogeneity and anisotropy in the lithospheric mantle. Tectonophysics 661:11–37CrossRefGoogle Scholar
  97. Tommasi A, Tikoff B, Vauchez A (1999) Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet Sci Lett 168(1):173–186CrossRefGoogle Scholar
  98. Tondi R, Achauer U, Landes M, Daví R, Besutiu L (2009) Unveiling seismic and density structure beneath the Vrancea seismogenic zone, Romania. J Geophys Res Solid Earth. CrossRefGoogle Scholar
  99. Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141(6):687–703CrossRefGoogle Scholar
  100. Vaselli O, Downes H, Thirlwall M, Dobosi G, Coradossi N, Seghedi I, Szakács A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the Eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36(1):23–53CrossRefGoogle Scholar
  101. Wagner LS, Anderson ML, Jackson JM, Beck SL, Zandt G (2008) Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36(12):935–938CrossRefGoogle Scholar
  102. Wang D, Mookherjee M, Xu Y, Karato SI (2006) The effect of water on the electrical conductivity of olivine. Nature 443(7114):977CrossRefGoogle Scholar
  103. Wenzel F, Lorenz FP, Sperner B, Oncescu MC (1999) Seismotectonics of the Romanian Vrancea area. In: Vrancea earthquakes: tectonics, hazard and risk mitigation. Springer, Dordrecht, pp 15–25CrossRefGoogle Scholar
  104. Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Miner Petrol 106(4):431–439CrossRefGoogle Scholar
  105. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290(5498):1910–1917CrossRefGoogle Scholar
  106. Xia QK, Liu J, Kovács I, Hao YT, Li P, Yang XZ, Chen H, Sheng YM (2017) Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. Natl Sci Rev. CrossRefGoogle Scholar
  107. Yang X, Keppler H, McCammon C, Ni H, Xia Q, Fan Q (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res Solid Earth. CrossRefGoogle Scholar
  108. Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288(1–2):291–300CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  • István Kovács
    • 1
  • Levente Patkó
    • 2
  • György Falus
    • 2
  • László Előd Aradi
    • 2
  • Gyöngyvér Szanyi
    • 1
  • Zoltán Gráczer
    • 1
  • Csaba Szabó
    • 2
  1. 1.Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical InstituteHungarian Academy of SciencesSopronHungary
  2. 2.Lithosphere Fluid Research Lab, Institute of Geography and Earth SciencesEötvös UniversityBudapestHungary

Personalised recommendations