Advertisement

Acta Geodaetica et Geophysica

, Volume 53, Issue 3, pp 347–367 | Cite as

Patterns and trends of time–space evolution of Neogene volcanism in the Carpathian–Pannonian region: a review

  • Alexandru Szakács
  • Zoltán Pécskay
  • Ágnes GálEmail author
Original Study

Abstract

Based on a self-consistent K–Ar database completed with up-to-date geochronological information, this review paper addresses the general time–space evolution of Neogene magmatism in the Carpathian–Pannonian region, aiming at identifying significant patterns and trends. Grouped according to petrochemical criteria (felsic and intermediate calc-alkaline, alkaline) and major geotectonic units (Carpathian and intra-Carpathian, in turn divided into ALCAPA and TISZA-DACIA lithospheric blocks), the dated rocks reveal distinct evolution patterns. The intra-Carpathian area is characterized by (1) scattered, areal Eastward shifting magmatism, more developed on the ALCAPA block, involving felsic and intermediate calc-alkaline magmas in the early stage of evolution (21–7 My) and alkaline magmas in the later stages (11 to < 1 My), and (2) long-lasting magmatic activity spatially focused in an area ca. 200 km across located on the ALCAPA block, shifting in time from felsic to intermediate calc-alkaline and finally to alkaline compositions. We suggest that a mantle plume-type thermal anomaly was acting at the site of focused magmatism contributing to the development of higher volume areal-type magmatism in the same block, as compared with the later activated colder and more brittle TISZA-DACIA block. The Carpathian magmatism in turn displays two distinct time–space evolution patterns: (1) a long-lasting and slowly eastward migrating intermediate calc-alkaline magmatic front, active in the 15–9 My time interval along most of the Carpathian thrust-and-fold belt, generated in a subduction environment, and (2) a time-transient magmatism along the South-easternmost Carpathian segment, in the 11 to < 0.1 Ma time interval, whose purely subduction-related origin is questionable. Beyond these evolution patterns, two regional CPR-wide trends have also been identified: (1) the general Eastward shift of magmatic activity in time, irrespective of the chemical type, and (2) the convergence of magmatism in both time and space towards the South-eastern corner of the CPR (i.e. the Carpathian bend area in Romania), currently the geodynamically most active (and most hazardous) area of the whole CPR, including the Vrancea seismic structure. Eastward directed asthenospheric flow, possibly related to the inferred mantle plume responsible for the focused time-persistent volcanism on the ALCAPA block, might be considered as being at the origin of these evolutionary trends.

Keywords

Carpathian–Pannonian region Neogene magmatism Time–space evolution 

Notes

Acknowledgements

The authors are indebted to many people contributing, in different ways, to the birth of this review paper. First of all to the TOPO Transylvania project team colleagues, Viktor Wesztergom, Eszter Szűcs, Csaba Szabó and László Bányai. Sierd Cloetingh, Liviu Maţenco and István Kovács are thanked for their encouragements and positive feedback. We also acknowledge the valuable input from Ioan Seghedi and Csaba Szabó by critically discussing a number of issues related to the subject of this paper.

References

  1. Balogh K, Konečný V, Lexa J (1998) K/Ar dating of the youngest calc-alkali rocks in the Central Slovakia volcanic field. XVIth congress CBGA Vienna 59Google Scholar
  2. Capaccioni B, Coradossi N, Harangi R, Harangi S, Karátson D, Sarocchi D, Valentini L (1995) Early Miocene pyroclastc rocks of the Bükkalja ignimbrite field (North Hungary)—a preliminary stratigraphic report. In: Downes H, Vaselli O (Eds.) Neogene and related volcanism in the Carpatho–Pannonian region. Acta Vulcanol 7: 119–124Google Scholar
  3. Cebriá JM, Wilson M (1995) Cenozoic mafic magmatism in western central Europe: a common European asthenospheric reservoir? Terra Nova 7:162Google Scholar
  4. Hámor G (1985) Geological conditions of the Nógrád-Cserhát study area. Geol Hung Ser Geol 22:1–307 (in Hungarian) Google Scholar
  5. Hámor G, Ravaszné Baranyai L, Balogh K, Árva Soós E (1980) Radiometric age of the Miocene rhyolite tuff horizons in Hungary. Annu Rep Hung Geol Inst 1978:65–73Google Scholar
  6. Harangi S, Lenkey L (2007) Genesis of the neogene to quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am 418:67–92.  https://doi.org/10.1130/2007.2418(04) CrossRefGoogle Scholar
  7. Harangi S, Molnár M, Vinkler AP, Kiss B, Tull AJT, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, Eastern-central Europe. Radiocarbon 52(2–3):1498–1507.  https://doi.org/10.1017/S0033822200046580 CrossRefGoogle Scholar
  8. Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39.  https://doi.org/10.1038/374034a0 CrossRefGoogle Scholar
  9. Kaličiak M, Žec B (1995) Review of Neogene volcanism of Eastern Slovakia. Acta Vulcanol 7(2):87–96Google Scholar
  10. Kaličiak M, Pécskay Z, Konečný V, Lexa J (1995) Evolution of the Vihorlat Neogene volcanic range based on K/Ar dating. Geol Soc Greece Spec Publ 4:523–526Google Scholar
  11. Karátson D, Márton E, Harangi S, Józsa S, Balogh K, Pécskay Z, Kovácsvölgyi S, Gy Szakmány, Dulai A (2000) Volcanic evolution and stratigraphy of the Miocene Börzsöny Mountains, Hungary: an integrated study. Geol Carpath 51(5):325–343Google Scholar
  12. Karátson D, Telbisz T, Harangi S, Magyari E, Dunkl I, Kiss B, Jánosi C, Veres D, Braun M, Fodor E, Biró T, Kósik S, von Eynatten H, Lin D (2013) Morphometrical and geochronological constraints on the youngest eruptive activity in East-Central Europe at the Ciomadul (Csomád) lava dome complex, East Carpathians. J Volcanol Geoth Res 255:43–56.  https://doi.org/10.1016/j.jvolgeores.2013.01.013 CrossRefGoogle Scholar
  13. Karátson D, Veres D, Wulf S, Gertisser R, Magyari EK, Bormann M (2017) The youngest volcanic eruptions in East-Central Europe—new findings from the Ciomadul lava dome complex, East Carpathians, Romania. Geol Today 33(2):60–65.  https://doi.org/10.1111/gto.12181 CrossRefGoogle Scholar
  14. Konečný V, Balogh K, Orlicky O, Lexa J, Vass D (1995a) Evolution of the Neogene-Quaternary alkali basalt volcanism in central and southern Slovakia (West Carpathians). Spec Publ Geol Soc Greece 4:533–538Google Scholar
  15. Konečný V, Lexa J, Hojsrikova V (1995b) The central Slovakia volcanic Field: a review. Acta Vulcanol 7(2):63–78.  https://doi.org/10.5382/GB.31 CrossRefGoogle Scholar
  16. Konečný V, Lexa J, Balogh K (1999) Neogene-Quaternary alkali basalt volcanism of Slovakia: review of volcano forms and evolution. Geol Carpath 50:112–115Google Scholar
  17. Kovács I, Szabó C (2008) Middle Miocene volcanism in the vicinity of the Middle Hungarian zone: evidence for an inherited enriched mantle source. J Geodyn 45(1):1–17.  https://doi.org/10.1016/j.jog.2007.06.002 CrossRefGoogle Scholar
  18. Kovacs M, Pécskay Z, Crihan M, Edelstein O, Gabor M, Bernat A (1997) K-AR study of Neogene volcanic rocks from the Oaş Mts. (East Carpathians, Romania). Rev Roum Geol 41:19–28Google Scholar
  19. Kovacs M, Pécskay Z, Fülöp A, Edelstein O, Gabor M (2003) Time–space evolution of the Neogene magmatism in Gutâi Mts., (Eastern Carpathians, Romania). Ann Inst Geol Spec Issue 73:22Google Scholar
  20. Lenkey L, Dövényi P, Horváth F, Cloetingh SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec Publ Ser 3:29–40CrossRefGoogle Scholar
  21. Lexa J, Seghedi I, Németh K, Szakács A, Konečný V, Pécskay Z, Fülöp A, Kovacs M (2010) Neogene-Quaternary Volcanic forms in the Carpathian–Pannonian region: a review. Cent Eur J Geosci 2(3):207–270.  https://doi.org/10.2478/v10085-010-0024-5 CrossRefGoogle Scholar
  22. Lukács R, Harangi S, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I, Zimmerer M (2018) Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): eruption chronology, correlation potential and geodynamic implications. Geophysical research abstracts, vol 20, EGU2018-12969Google Scholar
  23. Márton E (2000) The Tisza Megatectonic unit in the light of paleomagnetic data. Acta Geol Hung 43(3):329–343Google Scholar
  24. Márton E, Fodor L (1995) Combination of palaeomagnetic and stress data—a case study from North Hungary. Tectonophysics 242:99–114CrossRefGoogle Scholar
  25. Márton E, Fodor L (2003) Tertiary paleomagnetic results and structural analysis from the Transdanubian Range (Hungary): rotational disintegration of the ALCAPA unit. Tectonophysics 363:201–224.  https://doi.org/10.1016/S0040-1951(02)00672-8 CrossRefGoogle Scholar
  26. Márton E, Pécskay Z (1998) Correlation and dating of the Miocene ignimbritic volcanics in the Bükk Foreland, Hungary: complex evaluation of paleomagnetic and K/Ar isotope data. Acta Geol Hung 41(4):467–476Google Scholar
  27. Mârza I, Niţă P, Niţă S (1991) Considérations sur la répartition et les sources volcaniques des principaux horizons de tufs de la Dépression de Transylvanie, sur le base des données de forage, Cluj-Napoca. In: Mârza I (ed) The volcanic tuffs from the Transylvanian Basin, Romania, vol 3. University of Cluj-Napoca Geology-Mineralogy, Department Special Issues, Cluj-Napoca, pp 191–199Google Scholar
  28. Mațenco L, Bertotti G, Leever K, Cloetingh S, Schmid SM, Tărăpoancă M, Dinu C (2007) Large-scale deformation in a locked collisional boundary: interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics 26:1–28.  https://doi.org/10.1029/2006TC001951 CrossRefGoogle Scholar
  29. Molnár K, Harangi S, Dunkl I, Lukács R, Kiss B, Schmitt AK, Seghedi I (2016) Eruption chronology of Ciomadul, a long dormant dacitic volcanic system in the Eastern Carpathians. Geophysical research abstracts, vol 18, EGU2016-15646Google Scholar
  30. Molnár K, Harangi S, Lukács R, Dunkl I, Seghedi I, Schmitt AK, Kiss B, Garamhegyi T, Seghedi I (2018) The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation. J Volcanol Geoth Res 354:39–56.  https://doi.org/10.1016/j.jvolgeores.2018.01.025 CrossRefGoogle Scholar
  31. Moriya I, Okuno M, Nakamura T, Szakács A, Seghedi I (1995) Last eruption and its 14C age of Ciomadul volcano, Romania (in Japanese with English Abstract). Summaries of researches using AMS at Nagoya University, vol VI, pp 82–91Google Scholar
  32. Moriya I, Okuno M, Nakamura T, Ono K, Szakács A, Seghedi I (1996) Radicarbon ages of charcoal fragments from the pumice flow deposit of the last eruption of Ciomadul volcano, Romania (in Japanese with English Abstract). Summaries of researches using AMS at Nagoya University , vol II, pp 252–255Google Scholar
  33. Pamić J, Pécskay Z (1996) Geochronological and K/Ar ages of Tertiary volcanic formations from the southern part of the Pannonian Basin in Croatia—based on surface and subsurface data. Nafta 47:195–202Google Scholar
  34. Panaiotu C (1999) Paleomagnetic studies in Romania; Tectonophysics implications. Ph.D. Thesis University of Bucharest (in Romanian) Google Scholar
  35. Panaiotu C, Pécskay Z, Hambach U, Seghedi I, Panaiotu CE, Itaya T, Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Perșani Mountains (Romania) revealed by combined K-Ar and paleomagnetic data. Geol Carpath 55(4):333–339Google Scholar
  36. Pécskay Z, Molnár F (2002) Relationships between volcanism and hydrothermal activity in the Tokaj Mts., NE Hungary, based on K/AR ages. Geol Carpath 53:303–314Google Scholar
  37. Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Konečný V, Kovacs M, Márton E, Kaličiak M, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Roşu E, Zeč B (1995) Space and time distribution of Neogene-Quaternary in the Carpatho–Pannonian region. Acta Vulcanol 7(2):15–28Google Scholar
  38. Pécskay Z, Seghedi I, Downes H, Prychodko M, Mackiv B (2000) K/Ar dating of Neogene calc-alkaline volcanic rocks from Transcarpathian Ukraine. Geol Carpath 51(2):83–89Google Scholar
  39. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Kovács M, Márton E, Zelenka T, Póka T, Fülöp A, Panaiotu C, Cvetković V (2006) Geochronology of Neogene-Quaternary magmatism in the Carpathian arc and Intra-Carpathian area: a review. Geol Carpath 57:511–530Google Scholar
  40. Pécskay Z, Seghedi I, Kovacs M, Szakács A, Fülöp A (2009) Geochronology of the Neogene calc-alkaline intrusive magmatism in the “Subvolcanic Zone” of the Eastern Carpathians (Romania). Geol Carpath 60(2):181–190.  https://doi.org/10.2478/v10096-009-0012-5 CrossRefGoogle Scholar
  41. Pierce KL, Morgan LA (2009) Is the track of the Yellowstone hotspot driven by a deep mantle plume? Review of volcanism, faulting, and uplift in light of new data. J Volcanol Geoth Res 188(1–3):1–25.  https://doi.org/10.1016/j.jvolgeores.2009.07.009 CrossRefGoogle Scholar
  42. Póka T, Zelenka T, Szakács A, Seghedi I, Nagy G, Simonits A (1998) Petrology and geochemistry of the Miocene acidic explosive volcanism of the Bükk Foreland; Pannonian Basin, Hungary. Acta Geol Hung 41:437–466Google Scholar
  43. Póka T, Zelenka T, Seghedi I, Pécskay Z, Márton E (2004) Miocene volcanism of Cserhát Mts. (N Hungary): integrated volcano-tectonic, geochronological and petrochemical study. Acta Geol Hung 47:221–246CrossRefGoogle Scholar
  44. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186(1):7–14.  https://doi.org/10.1016/S0012-821X(01)00226-6 CrossRefGoogle Scholar
  45. Roşu E, Pécskay Z, Stefan A, Popescu G, Panatoiu C, Panatoiu CE (1997) The evolution of the Neogene volcanism in the Apuseni Mts. (Romania): constraints from new K-Ar data. Geol Carpath 48:353–359Google Scholar
  46. Roşu E, Seghedi I, Downes H, Alderton DHM, Szakács A, Pécskay Z, Panatoiu C, Panatoi CE, Nedelcu L (2004) Extension-related Miocen calc-alkaline magmatism in the Apuseni Mountains, Romania: origin of magmas. Schweiz Miner Petrog 84:153–172Google Scholar
  47. Seghedi I, Szakács A, Udrescu C, Stoian M, Grabari G (1987) Trace element geochemistry of the South Harghita volcanics (East Carpathians): Calc-alkaline and shoshonitic associations. DS Inst Geol Geofiz 72–73(1):381–397Google Scholar
  48. Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Roşu E, Pécskay Z, Márton E, Panaiotu C (2004a) Neogene-Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72(3–4):117–146CrossRefGoogle Scholar
  49. Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K, Pécskay Z (2004b) Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian–Pannonian region: a review. Tectonophysics 393(1–4):43–62.  https://doi.org/10.1016/j.lithos.2003.08.006 CrossRefGoogle Scholar
  50. Seghedi I, Szakács A, Snelling N, Pécskay Z (2004c) Evolution of the Neogene Gurghiu Mountains volcanic range (Eastern Carpathians, Romania), based on K-Ar geochronology. Geol Carpath 55(4):325–332Google Scholar
  51. Seghedi I, Szakács A, Pécskay Z, Mason PRD (2005) Eruptive history and age of magmatic processes in the Călimani volcanic structure, Romania. Geol Carpath 56(1):67–79Google Scholar
  52. Seghedi I, Ntaflos T, Pécskay Z (2008) The Gătaia Pleistocene lamproite: a new occurrence at the southeastern edge of the Pannonian Basin, Romania. In: Coltorti M, Grégoire M (eds) Metasomatism in oceanic and continental lithospheric mantle, vol 293. Geological Society, Special Publications, London, pp 83–100Google Scholar
  53. Seghedi I, Popa RG, Panaiotu CG, Szakács A, Pécskay Z (2016) Short-lived eruptive episodes during the constructionof a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania). Bull Volcanol 78(10):69.  https://doi.org/10.1007/s00445-016-1063-y CrossRefGoogle Scholar
  54. Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian–Pannonian region. Tectonophysics 208(1–3):243–256.  https://doi.org/10.1016/0040-1951(92)90347-9 CrossRefGoogle Scholar
  55. Szakács A (2000) Petrologic and tephrologic study of the Lower Badenian volcanic tuffs in the north-western Transylvanian Basin. Ph.D. Thesis, University of BucharestGoogle Scholar
  56. Szakács A (2010) Post-volcanic phenomena in the East Carpathians. In: Evelpidou N, de Figueiredo T, Mauro F, Tecim V, Vassilopoulos A (eds) Natural heritage from East to West. Case studies from 6 EU Countries. Springer, Berlin, pp 87–93.  https://doi.org/10.1007/978-3-642-01577-9_10 CrossRefGoogle Scholar
  57. Szakács A, Seghedi I (1995) The Calimani-Gurghiu-Harghita volcanic chain, East Carpathians, Romania: volcanological features. Acta Vulcanol 7(2):145–153Google Scholar
  58. Szakács A, Seghedi I, Pécskay Z (1993) Pecularities of South Harghita Mts. as terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Rev Roum de Géol 37:21–36Google Scholar
  59. Szakács A, Zelenka T, Márton E, Pécskay Z, Póka T, Seghedi I (1998) Miocene acidic explosive volcanism in the Bükk Foreland, Hungary: identifying eruptive sequences and searching for source locations. Acta Geol Hung 41(4):413–435Google Scholar
  60. Szakács A, Pécskay Z, Silye L, Balogh K, Vlad D, Fülöp A (2012) On the age of the Dej Tuff, Transylvanian Basin, Romania. Geol Carpath 63:138–148CrossRefGoogle Scholar
  61. Szakács A, Seghedi I, Pécskay Z, Mirea V (2015) Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania. Bull Volcanol 77:12.  https://doi.org/10.1007/s00445-014-0894-7 CrossRefGoogle Scholar
  62. Szakács A, Szűcs E, Gál Á, Wesztergom V (2018) TOPO TRANSYLVANIA within TOPO EUROPE: introduction to an unfolding project. Geophysical research abstracts, vol. 20, EGU2018-19532Google Scholar
  63. Zelenka T, Balázs E, Balogh K, Kiss J, Kozák M, Nemesi L, Pécskay Z, Püspöki Z, Cs Ravasz, Széky-Fux V, Újfalussy A (2004) Buried Neogene volcanic structures in Hungary. Acta Geol Hung 47(2–3):177–219CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  1. 1.Institute of GeodynamicsRomanian AcademyBucharestRomania
  2. 2.Institute of Nuclear Research (ATOMKI)DebrecenHungary
  3. 3.Department of Geology, Babeș-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations