Acta Geodaetica et Geophysica

, Volume 53, Issue 3, pp 331–345 | Cite as

Probing tectonic processes with space geodesy in the south Carpathians: insights from archive SAR data

  • Eszter Szűcs
  • István BozsóEmail author
  • István János Kovács
  • László Bányai
  • Ágnes Gál
  • Alexandru Szakács
  • Viktor Wesztergom
Original Study


The Carpathian bend is amongst the tectonically most active areas in Europe where intraplate subduction triggers sub-crustal earthquakes releasing significant amount of seismic energy in a well-defined seismic zone. To constrain the deep processes by exploiting their linkage to the surface processes an accurate knowledge of surface deformations is required. Detection of small-magnitude tectonic processes with high reliability is a challenge in which the recent space geodetic techniques may bright a breakthrough. In this study we used the archive ENVISAT data set of the European Space Agency to investigate the feasibility limit of detecting crustal deformations in the region of the south Carpathian bend, where past geodetic observations failed to unravel the tectonic processes with high details. Despite the inherent limitations of radar interferometry our results show that coherent velocity field can be estimated with a magnitude of few mm/year. The vertical displacement field suggests subsidence in the Brasov basin which is in agreement with former studies, however radar interferometry can provide a more detailed picture.


Geodynamics Vrancea zone Radar interferometry ENVISAT 



ENVISAT images were provided by the European Space Agency under contract No. 30142 Initial assessments of recent surface evolution at the interior of the Carpathian bend area (Romania) using archive SAR acquisitions and geodetic data.

Conlict of interest

The authors declare no conflict of interest.


  1. Airinei S, Pricăjan A (1974) Some geological correlations between the mineral carbonic and thermal waters and the post-volcanic manifestations correlated with the deep geological structure of the East Carpathians. Romania. Inst. Geol. Geofiz., Stud. Tehn. Econ. HidrogeologieGoogle Scholar
  2. Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Global Planet Change 58(1–4):165–180. CrossRefGoogle Scholar
  3. Bányai L, Nagy L, Bozsó I, Szűcs E, Wesztergom V (2018) Műholdradar-interferometriás alkalmazások fejlesztése a tektonikus folyamatok megfigyelésében. (Development of satellite radar interferometry applications for observation of tectonic processes). Magyar Geofizika (Hungarian Geophysics), vol 59. Issue 1, pp 1–13Google Scholar
  4. Berardino P et al (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383. CrossRefGoogle Scholar
  5. Dinter G, Schmitt G (2001) Three dimensional plate kinematics in Romania. Nat Hazards 23(2–3):389–406. CrossRefGoogle Scholar
  6. González PJ et al (2015) The 2014-2015 eruption of Fogo volcano: geodetic modeling of Sentinel-1 TOPS interferometry. Geophys Res Lett 42(21):9239–9246. CrossRefGoogle Scholar
  7. Grandin R, Vallée M, Lacassin R (2017) Rupture process of the M w 5.8 Pawnee, Oklahoma, earthquake from Sentinel-1 InSAR and seismological data. Seismol Res Lett 88(4):994–1004. CrossRefGoogle Scholar
  8. Hanssen RF (2001) Radar interferometry, scientific American. CrossRefGoogle Scholar
  9. Harangi S et al (2015) Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians). J Volcanol Geoth Res 290:82–96. CrossRefGoogle Scholar
  10. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302. CrossRefGoogle Scholar
  11. Hooper A, Zebker HA (2007) Phase unwrapping in three dimensions with application to InSAR time series. J Opt Soc Am A 24(9):2737. CrossRefGoogle Scholar
  12. Hooper A et al (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13. CrossRefGoogle Scholar
  13. Horváth F, Bada G, Szafián P, Tari G, Adám A, Cloetingh S (2006a) Formation and deformation of the Pannonian basin: constraints from observational data. Geol Soc Lond Mem 32(1):191–206. CrossRefGoogle Scholar
  14. Horváth F et al (2006b) Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text (A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó). Magyar Geofizika 47(4):133–137Google Scholar
  15. Hussain E et al (2016) Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements. J Geophys Res: Solid Earth 121(12):9000–9019. CrossRefGoogle Scholar
  16. Ismail-Zadeh A et al (2012) Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics 530–531:50–79. CrossRefGoogle Scholar
  17. Kampes BM, Hanssen RF, Perski Z (2003) Radar interferometry with public domain tools. In: Third international workshop on ERS SAR interferometry, ‘FRINGE03’, Frascati, Italy, 1–5 December 2003, p 6Google Scholar
  18. Karátson D, Wulf S, Veres D, Magyari EK, Gertisser R, Timar-Gabor A, Novothny A, Telbisz T, Szalai Z, Anechitei-Deacu A, Appelt O, Bormann M, Jánosi Cs, Hubay K, Schäbitz F (2016) The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians—a tephrostratigraphic approach for the 51–29 ka BP time interval. J Volcanol Geoth Res 319:29–51CrossRefGoogle Scholar
  19. Kis BM, Ionescu A, Cardellini C, Harangi S, Baciu C, Caracausi A, Viveiros F (2017) Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian–Pannonian Region (Eastern-Central Europe, Romania). J Volcanol Geoth Res 341:119–130CrossRefGoogle Scholar
  20. Kovács I, Falus G, Stuart G, Hidas K, Szabá C, Flower M, Hegedűs E, Posgay K, Zilahi-Sebess L (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for cenozoic extension and extrusion? Tectonophysics 514–517:168–179. CrossRefGoogle Scholar
  21. Li Z et al (2016) Towards InSAR everywhere, all the time, with Sentinel-1. Int Arch Photogramm Remote Sens Spat Inf Sci: ISPRS Arch 41(July):763–766. CrossRefGoogle Scholar
  22. Matenco LC (2017) Tectonics and exhumation of the Romanian Carpathians: inferences from kinematic and thermochronological studies. In: Radoane Maria, Vespremeanu-Stroe Alfred (eds) Landform dynamics and evolution in Romania. Springer, Cham, pp 15–56CrossRefGoogle Scholar
  23. Matenco L, Bertotti G, Cloetingh SAPL, Dinu C (2003) Subsidence analysis and tectonic evolution of the external Carpathian–Moesian platform region during neogene times. Sed Geol 156(1–4):71–94CrossRefGoogle Scholar
  24. Osmanoğlu B et al (2016) Time series analysis of InSAR data: methods and trends. ISPRS J Photogramm Remote Sens 115:90–102. CrossRefGoogle Scholar
  25. Parker AL et al (2015) Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: application to the Cascade volcanoes, United States. Remote Sens Environ. CrossRefGoogle Scholar
  26. Parker AL, Biggs J, Lu Z (2016) ‘Time-scale and mechanism of subsidence at Lassen Volcanic Center, CA, from InSAR. J Volcanol Geotherm Res. CrossRefGoogle Scholar
  27. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konecny V, Zelenka T, Kovács M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetkovic V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  28. Popa M et al (2012) New seismic and tomography data in the southern part of the Harghita Mountains (Romania, southeastern Carpathians): connection with recent volcanic activity. Pure appl Geophys 169(9):1557–1573. CrossRefGoogle Scholar
  29. Qorbani E, Bokelmann G, Kovács I, Horváth F, Falus G (2016) Deformation in the asthenospheric mantle beneath the Carpathian-Pannonian Region. J Geophys Res Solid Earth 121(9):6644–6657CrossRefGoogle Scholar
  30. Reuter HI, Nelson AD, Jarvis A (2007) ‘An evaluation of void-filling interpolation methods for SRTM data. Int J Geogr Inf Sci 21(9):983–1008. CrossRefGoogle Scholar
  31. Rosen PA et al (2004) Updated repeat orbit interferometry package released. EOS Trans Am Geophys Union 85(5):47. CrossRefGoogle Scholar
  32. Ruiz-Armenteros AM et al (2016) Multi-temporal InSAR processing comparison in presence of high topography. Procedia Comput Sci 100:1181–1190. CrossRefGoogle Scholar
  33. Schmitt G, Nuckelt A, Knöpfler A, Marcu C (2007) Three dimensional plate kinematics in Romania. In: Proceedings international symposium on strong Vrancea earthquakes and risk mitigation. Bucharest, Romania, October 4–6, pp 389–406. CrossRefGoogle Scholar
  34. Schmitt G et al (2009) Recent plate kinematics in Romania. Assembly 11:2186Google Scholar
  35. Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Rosu E, Pécskay Z, Márton E, Panaiotu C (2004) Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146CrossRefGoogle Scholar
  36. Seghedi I, Popa RG, Panaiotu CG, Szakács A, Pécskay Z (2016) Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania). Bull Volcanol 78(10):69CrossRefGoogle Scholar
  37. Shirzaei M et al (2016) Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas. Science 353(6306):1416–1419. CrossRefGoogle Scholar
  38. Sousa JJ et al (2010) PS-InSAR processing methodologies in the detection of field surface deformation-study of the Granada basin (Central Betic Cordilleras, southern Spain). J Geodyn 49(3–4):181–189. CrossRefGoogle Scholar
  39. Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian–Pannonian Region. Tectonophysics 208:243–256CrossRefGoogle Scholar
  40. Szakács A, Szűcs E, Gál A, Wesztergom V (2018) TOPO TRANSYLVANIA within TOPO EUROPE: Introduction to an unfolding project. Geophys Res Abstr 20, pp EGU2018-19532Google Scholar
  41. van der Hoeven A et al (2004) GPS probes the kinematics of the Vrancea seismogenic zone. Eos 85(19):185–196. CrossRefGoogle Scholar
  42. van der Hoeven AAG et al (2005) Observation of present-day tectonic motions in the southeastern Carpathians: results of the ISES/CRC-461 GPS measurements. Earth Planet Sci Lett 239(3–4):177–184. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  1. 1.MTA CSFK Geodetic and Geophysical InstituteSopronHungary
  2. 2.Babeș-Bolyai UniversityCluj-NapocaRomania
  3. 3.Institute of GeodynamicsRomanian AcademyBucharestRomania

Personalised recommendations