Advertisement

Acta Geodaetica et Geophysica

, Volume 51, Issue 2, pp 137–149 | Cite as

Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’ method

  • M. Abrehdary
  • L. E. Sjöberg
  • M. Bagherbandi
Article
  • 195 Downloads

Abstract

An experiment for estimating Moho depth is carried out based on satellite altimetry and topographic information using the Vening Meinesz–Moritz gravimetric isostatic hypothesis. In order to investigate the possibility and quality of satellite altimetry in Moho determination, the DNSC08GRA global marine gravity field model and the DTM2006 global topography model are used to obtain a global Moho depth model over the oceans with a resolution of 1° × 1°. The numerical results show that the estimated Bouguer gravity disturbance varies from 86 to 767 mGal, with a global average of 747 mGal, and the estimated Moho depth varies from 3 to 39 km with a global average of 19 km. Comparing the Bouguer gravity disturbance estimated from satellite altimetry and that derived by the gravimetric satellite-only model GOGRA04S shows that the two models agree to 13 mGal in root mean square (RMS). Similarly, the estimated Moho depths from satellite altimetry and GOGRA04S agree to 0.69 km in RMS. It is also concluded that possible mean dynamic topography in the marine gravity model does not significantly affect the Moho determination.

Keywords

Vening Meinesz–Moritz Moho depth Satellite altimetry DNSC08GRA 

Notes

Acknowledgments

This study was supported by projects Nos. 76/10:1 and 116/12 of the Swedish National Space Board (SNSB). Dr. Ole Baltazar Andersen from The National Space Institute of Denmark (DTU SPACE) is acknowledged for his help and discussion about the global marine gravity field model.

References

  1. Andersen OB, Knudsen P, Berry PA (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199CrossRefGoogle Scholar
  2. Bagherbandi M, Sjöberg LE (2012) Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys Earth Planet Inter 200:37–44CrossRefGoogle Scholar
  3. Bagherbandi M, Sjöberg LE (2013) Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.0. Earth Sci Rev 117:29–39. doi: 10.1016/j.earscirev.2012.12.002 CrossRefGoogle Scholar
  4. Bagherbandi M, Tenzer R, Sjöberg LE, Novák P (2013) Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J Geodyn 66:25–37CrossRefGoogle Scholar
  5. Bassin C, Laske G, Masters TG (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897Google Scholar
  6. Bouman J, Ebbing J, Meekes S, Abdul Fattah R, Fuchs M, Gradmann S, Bosch W (2013) GOCE gravity gradient data for lithospheric modeling. Int J Appl Earth Obs Geoinf 35:16–30CrossRefGoogle Scholar
  7. Deng X, Griffin DA, Ridgway K, Church JA, Featherstone WE, White NJ, Cahill M (2011) Satellite altimetry for geodetic, oceanographic, and climate studies in the Australian region. Coastal altimetry. Springer, Berlin, pp 473–508CrossRefGoogle Scholar
  8. Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman, New YorkGoogle Scholar
  9. Hwang C, Parsons B (1996) A optimal procedure for deriving marine gravity from multi-satellite altimetry. J Geophys Int 125:705–719CrossRefGoogle Scholar
  10. Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8(1):65–79CrossRefGoogle Scholar
  11. Laske G, Masters G, Ma Z, Pasyanos ME (2013), A new global crustal model at 1 × 1 degrees (CRUST1.0). (http://igppweb.ucsd.edu/~gabi/crust1.html)
  12. Lebedev S, Adam JMC, Meier T (2013) Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 609:377–394CrossRefGoogle Scholar
  13. Meier U, Curtis A, Trampert J (2007) Global crustal thickness from neural network inversion of surface wave data. Geophys J Int 169(2):706–722CrossRefGoogle Scholar
  14. Moritz H (1990) The figure of the Earth. H Wichmann, KarlsruheGoogle Scholar
  15. Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162Google Scholar
  16. Pasyanos M, Masters G, Laske G, Ma Z (2012) Litho1.0—an updated crust and lithospheric model of the Earth developed using multiple data constraints. Fall Meeting, AGU, San Francisco, Calif., Abstract: 3–7 Dec, 2012. 2.4Google Scholar
  17. Rapp RH (1980) A comparison of altimeter and gravimetric geoids in the Tonga Trench and Indian Ocean areas. Bull Géod 54(2):149–163CrossRefGoogle Scholar
  18. Reguzzoni M, Sampietro D (2014) GEMMA: An Earth crustal model based on GOCE satellite data. Int J Appl Earth Obs Geoinf 35:31–43CrossRefGoogle Scholar
  19. Reguzzoni M, Sampietro D, Sansò F (2013) Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys J Int 195:222–237CrossRefGoogle Scholar
  20. Sampietro D, Reguzzoni M, Braitenberg C (2014) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. Earth on the edge: science for a sustainable planet. Springer, Berlin, pp 391–397CrossRefGoogle Scholar
  21. Shapiro NM, Ritzwoller MH (2002) Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys J Int 151:88–105CrossRefGoogle Scholar
  22. Sjöberg LE (1998a) The exterior Airy/Heiskanen topographic-isostatic gravity potential anomaly and the effect of analytical continuation in Stokes’ formula. J Geod 72:654–662CrossRefGoogle Scholar
  23. Sjöberg LE (1998b) On the Pratt and Airy models of isostatic geoid undulations. J Geod 26(1):137–147CrossRefGoogle Scholar
  24. Sjöberg LE (2009) Solving Vening Meinesz–Moritz inverse problem in isostasy. Geophys J Int 179(3):1527–1536. doi: 10.1111/j.1365-246X.2009.04397.x CrossRefGoogle Scholar
  25. Sjöberg LE (2013) On the isostatic gravity disturbance and disturbance and their applications to Vening Meinesz–Moritz gravimetric inverse problem. Geophys J Int 193(3):1277–1282CrossRefGoogle Scholar
  26. Tenzer R, Bagherbandi M (2012) Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 2012(3):918–929. doi: 10.4236/ijg.2012.325094 CrossRefGoogle Scholar
  27. Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L.E., Novák, P. (2014), Spectral and spatial characteristics of the refined CRUST1.0 gravity field. Submitted to Surveys in GeophysicsGoogle Scholar
  28. Vening Meinesz FA (1931) Une nouvelle methode pour la reduction isostatique regionale del’intensite de la pesanteur. Bull Geod 29:33–51CrossRefGoogle Scholar
  29. Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, CambridgeGoogle Scholar
  30. Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geod 57(2):174–202CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • M. Abrehdary
    • 1
  • L. E. Sjöberg
    • 1
  • M. Bagherbandi
    • 1
    • 2
  1. 1.Division of Geodesy and Satellite PositioningRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of Industrial Development, IT and Land ManagementUniversity of GävleGävleSweden

Personalised recommendations