Acta Geodaetica et Geophysica

, Volume 51, Issue 1, pp 15–41 | Cite as

Seismotectonic content by the source parameters of the 10 June 2012 Ölüdeniz-Fethiye (Dodecanese Islands) Mw 6.1 earthquake and aftershocks (southwestern Turkey)

  • Bülent Doğan
  • T. Serkan Irmak
  • Ahmet Karakaş
  • Doğan Kalafat


A detailed source and rupture process analyzes of the 10 June 2012 Ölüdeniz-Fethiye (Dodecanese Islands; Mw 6.1) earthquake has been carried out using inversion of both complex body waves and strong ground motion records. The rupture starting from the hypocenter propagated gradually to the southwest. The main rupture is modeled by a main asperity located 2–3 km beneath the hypocenter and two small asperities. The size of the effective source area is about 24 × 12 km, the rupture duration was approximately 12 s and the total seismic moment was estimated to be 1.955 × 1018 Nm. Continuation of compression from the Hellenic Arc to the southeast part of Fethiye Gulf in the north developed many active faults with complex geometries in the region. According to the stress field obtained from the focal mechanism solutions of the 10 June 2012 Fethiye (Dodecanese Islands; Mw 6.1) earthquake and M ≥ 3.5 earthquakes which occurred in Fethiye Gulf, the region between Fethiye Gulf and Rhodes Basin was deformed by the NW–SE oriented extension. (T-σ3) principal stress axis is dominant in the region. Additionally, NNW–SSE compression (P-σ1) in further southwest of Fethiye Gulf contributed to forming normal and strike-slip faults. Continuation of the NE–SW trending thrust faults located from the west limb of the Hellenic Arc to the southeast of Fethiye Gulf caused deformation in the region due to the seismotectonic model of the region. Both, normal faulting related to the “pure extension” occurred after the compression, and strike-slip faulting associated with the “transtension”, have been expressed by the spatial positions of the principal stress axes in the study area.


Fethiye (Dodecanese Islands; Mw 6.1) earthquake Focal mechanism Stress field Extension Transtension Seismotectonic model 



The authors would like to express their gratitude to two anonymous reviewers and the editor, Prof. Dr. Peter VARGA, for their constructive comments.


  1. Akyol N, Zhu L, Mitchell BJ, Sözbilir H, Kekovalı K (2006) Crustal structure and local seismicity in Western Anatolia. Geophys J Int. doi: 10.1111/j.1365-246X.2006.0353 Google Scholar
  2. Alçiçek MC, Ten Veen JH, Özkul M (2006) Neotectonic development of the Çameli Basin, southwestern Anatolia, Turkey. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the eastern Mediterranean region. Geological Society of London, Special Publication 260, pp 591–611Google Scholar
  3. Ambraseys NN (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, Cambridge. ISBN-13: 9780521872928Google Scholar
  4. Angelier J (2002) Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV—a new method free of choice among nodal lines. Geophys J Int 150:568–609CrossRefGoogle Scholar
  5. Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des di`edres droits’. Bull. de la Société Géologique de France 7:1309–1318Google Scholar
  6. Armijo R, Lyon-Caen H, Papanastassiou D (1992) E-W extension and Holocene normal fault scarps in the Hellenic Arc. Geology 20:491–494CrossRefGoogle Scholar
  7. Ayhan ME, Demir C, Lenk O, Kılıçoğlu A, Altıner Y, Barka AA, Ergintav S, Özener H (2002) Inter-seismic strain accumulation in the marmara sea region. Bull Seismol Soc Am 92:216–229CrossRefGoogle Scholar
  8. Baqués V, Travé A, Benedicto A, Labaume P (2009) Relationship between fluid flow and tectonic brecciation in the Neogene extensional Vallès-Penedès basin (Catalan Ranges, NE Iberian). J Geochem Explor 101:4CrossRefGoogle Scholar
  9. Barka AA (1992) The North Anatolian Fault zone. Ann Tecton 6:164–195Google Scholar
  10. Bozkurt E (2001) Neotectonics of Turkey—a synthesis. Geodyn Acta 14:3–30CrossRefGoogle Scholar
  11. Busby C (2004) Continental growth at convergent margins facing large ocean basins: a case study from Mesozoic convergent-margin basins of Baja California, Mexico. Tectonophysics 392:241–277CrossRefGoogle Scholar
  12. Cavazza W, Barone M (2010) Large-scale sedimentary recycling of tectonic mélange in a forearc setting: the Ionian basin (Oligocene–Quaternary, southern Italy). GSA Bulletin 122(11–12):1932–1949. doi: 10.1130/B30177.1 CrossRefGoogle Scholar
  13. Chamot-Rooke N, Rabaute A, Kreemer C (2005) Western Mediterranean Ridge mud belt correlates with active shear strain at the prism-backstop geological contact. Geology 33(11):861–864. doi: 10.1130/G21469.1 CrossRefGoogle Scholar
  14. Chaumillon E, Mascle J (1995) Variation latérate des fronts de déformation de la Ride Méditerraneénne (Méditerraneé orientale). Bull Soc Geol Fr 166:463–478Google Scholar
  15. Clarke PJ, Davies RR, England PC, Parsons B, Billiris H, Paradissis D, Veis G, Cross PA, Denys H, Ashkenazi V, Bingley R, Kahle HG, Muller MV, Briole P (1998) Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys J Int 135(1):195–214CrossRefGoogle Scholar
  16. Delvaux D, Sperner B (2003) New aspects of tectonic stress inversion with reference to the TENSOR program. In: Nieuwland DA (ed) New insights into structural interpretation and modelling. Geological Society Special Publications 212, London, pp 75–100Google Scholar
  17. Delvaux D, Moeys R, Stapel G, Petit C, Levi K, Miroshnichenko A. Ruzhich V, Sankov V (1997) Paleostress reconstructions and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic rifting. In: Cloetingh S, Fernandez M, Munoz JA, Sassi W, Horvath F (eds) Structural controls on sedimentary basin formation. Tectonophysics, vol 282, pp 1–38Google Scholar
  18. Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  19. Duermeijer CE, Nyst M, Meijer PT, Langereis CG, Spakman W (2000) Neogene evolution of the Aegean arc: palaeomagnetic and geodetic evidence for a rapid and young rotation phase. Earth Planet Sci Lett 176:509–525CrossRefGoogle Scholar
  20. Ebeling CW, Okal EA, Kalligeris N, Synolakis CE (2012) Modern seismological reassessment and tsunami simulation of historical Hellenic Arc earthquakes. Tectonophysics 530–531:225–239CrossRefGoogle Scholar
  21. EMSC (2012) European-Mediterranean Seismological Centre. Visited 26 July 2012
  22. Ganas A, Parsons T (2009) Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. J Geophys Res 114:B06404. doi: 10.1029/2008JB005599 Google Scholar
  23. Glover C, Robertson A (1998) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298:103–132CrossRefGoogle Scholar
  24. Görgün E, Zang A, Kalafat D, Kekovalı K (2014) The 10 June 2012 Fethiye Mw 6.0 aftershock sequence and its relation to the 24–25 April 1957 Ms 6.9–7.1 earthquakes in SW Anatolia, Turkey. J Asian Earth Sci 93:102–112CrossRefGoogle Scholar
  25. Guidoboni E, Comastri A (2005) Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century. INGV-SGA, BolognaGoogle Scholar
  26. Guidoboni E, Ebel JE (2009) Earthquakes and tsunamis in the past: a guide to techniques in historical seismology. Cambridge University Press, Cambridge. ISBN-13: 9780521837958Google Scholar
  27. Gürer A, Bayrak M, Gürer ÖF (2004) Magnetotelluric images of the crust and mantle in the southwestern Taurides, Turkey. Tectonophysics 391(1):109–120CrossRefGoogle Scholar
  28. Hall J, Aksu AE, Yaltırak C, Winsor JD (2009) Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Mar Geol 258:1–23CrossRefGoogle Scholar
  29. Hall J, Aksu AE, Elitez I, Yaltırak C, Çifçi G (2014) The Fethiye-Burdur Fault Zone: a component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics 635:80–99CrossRefGoogle Scholar
  30. Hartzell SH, Heaton TH (1983) Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake’. Bull Seism Soc Am 73:1553–1583Google Scholar
  31. Huguen C, Mascle JE, Chaumillon J, Woodside M, Benkhelil J, Achim K, Volkonskaia A (2001) Deformational styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics 343:21–47CrossRefGoogle Scholar
  32. Irmak S (2013) Focal mechanisms of small-moderate earthquakes in Denizli Graben (SW Turkey. Earth Planets Space 65:943–955CrossRefGoogle Scholar
  33. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1107CrossRefGoogle Scholar
  34. Kalafat D, Kekovalı K, Güneş Y, Yılmazer M, Kara M, Deniz P, Berberoğlu M (2009) A catalogue of source parameters of moderate and strong earthquakes for Turkey and its surrounding area (1938–2008). Boğaziçi Üniversitesi Report, Istanbul, TurkeyGoogle Scholar
  35. Kikuchi M, Kanamori H (1991) Inversion of complex body waves—III. Bull Seism Soc Am 81:2335–2350Google Scholar
  36. Kikuchi M, Yagi Y, Yamanaka Y (2000) Source process of Chi-Chi, Taiwan earthquake of September 21, 1999 inferred from teleseismic body waves. Bull Earthq Res Inst Univ Tokyo 75:1–13Google Scholar
  37. Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. J Geodyn 36(1–2):251–274CrossRefGoogle Scholar
  38. Kissel C, Poisson A (1986) Etude paléomagnétique préliminare des formations néogénes du bassin d’Antalya (Taurides occidentales, Turquie). Comptes Rendus de I’Académie des Sciences de Paris 302:711–716Google Scholar
  39. KOERI (2012) Visited 19 June 2012
  40. Kohketsu K (1985) The extended reflectivity method for synthetic near-field seismograms. J Phys Earth 33:121–131CrossRefGoogle Scholar
  41. Kontogianni VA, Tsoulos N, Stiros SC (2002) Coastal uplift, earthquakes and active faulting of Rhodes Island (Aegean Arc): modeling based on geodetic inversion. Mar Geol 186:299–317CrossRefGoogle Scholar
  42. Kreemer C, Chamot-Rooke N (2004) Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophys J Int 157:1377–1392. doi: 10.1111/j.1365-246X.2004.02270.x CrossRefGoogle Scholar
  43. Lawson CH, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Englewood CliffsGoogle Scholar
  44. Le Pichon X, Nicolas L, Angelier J, Renard V (1982) Strain distribution over the east Mediterranean ridge: a synthesis incorporating new Sea-Beam data. Tectonophysics 86:1–3, 243–255, 259–274Google Scholar
  45. Leite O, Mascle J (1982) Geological structures on the south Cretan continental margin and Hellenic Trench (eastern Mediterranean). Mar Geol 49:199–223CrossRefGoogle Scholar
  46. Lekkas E, Papanikolaou D, Sakellariou D (2000) Neotectonic map of Greece: Rhodos Sheet. Tectonic Committee of the Geological Society of Greece, AthensGoogle Scholar
  47. Mascle J, Martin L (1990) Shallow structure and recent evolution of the Aegean Sea; a synthesis based on continuous reflection profiles. Mar Geol 94:271–299CrossRefGoogle Scholar
  48. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzonis A, Paradissis D, Peter Y, Prilepin M, Reilenger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in he eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719CrossRefGoogle Scholar
  49. McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Roy Astron Soc 30:109–185CrossRefGoogle Scholar
  50. Meade BJ, Hager BH, Mcclusky SC, Reilinger RE, Ergintav S, Lenk O, Barka A, Özener H (2002) Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by global positioning system measurements. Bull Seismol Soc Am 92:208–215CrossRefGoogle Scholar
  51. Micheal AJ (1991) Spatial variations of stress within the 1987 Whittier Narrows, California, aftershock sequence: new techniques and results. J Geophys Res 96:6303–6319CrossRefGoogle Scholar
  52. Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolıvet L, Horvath E, Seranne M (eds) The Mediterranean Basins: tertiary extension within the Alpine Orogen. Geological Society London Special Publications 156, pp 475–515Google Scholar
  53. Över S, Özden S, Pınar A, Yılmaz H, Ünlügenç UC, Kamaci Z (2010) Late Cenozoic stress field in the Cameli Basin, SW Turkey. Tectonophysics 492(1–4):60–72CrossRefGoogle Scholar
  54. Över S, Hüseyin Y, Pınar A, Özden S, Ünlügenç UC, Kamaci Z (2012) Plio-Quaternary stress state in the Burdur Basin. Tectonophysics, SW-Turkey. doi: 10.1016/j.tecto.2012.12.009 Google Scholar
  55. Papadopoulos GA (2001) Tsunamis in the East Mediterranean: a catalogue for the area of Greece and adjacent seas. In: Proceedings of the Joint IOC-IUGG ınternational workshop. Tsunami Risk Assessment beyond 2000: theory, practice and plans, Moscow, RussiaGoogle Scholar
  56. Papazachos B (1996) Large seismic faults in the Hellenic Arc. Ann Geofis 395:891–903Google Scholar
  57. Papazachos B, Delibasis N (1969) Tectonic stress field and seismic faulting in the area of Greece. Tectonophysics 73:231–255CrossRefGoogle Scholar
  58. Papazachos BC, Comninakis PE, Karakaisis BG, Karakostas BG, Papaioannou CA, Papazachos CB, Scordilis EM (2000) A catalog of earthquakes in Greece and surrounding area for the period 550 BC–1999. Geophysics Laboratory, University of Thessaloniki, ThessalonikiGoogle Scholar
  59. Piper JD, Gürsoy AH, Tatar O, Beck ME, Raoa A, Koçbulut F, Mesci BL (2010) Distributed neotectonic deformation in the Anatolides of Turkey: a palaeomagnetic analysis. Tectonophysics 488:31–50CrossRefGoogle Scholar
  60. Pondrelli S, Morelli A, Ekström G, Mazza S, Boschi E, Dziewonski AM (2002) European-Mediterranean regional centroid-moment tensors: 1997–2000. Phys Earth Planet Int 130:71–101CrossRefGoogle Scholar
  61. Reilinger R, McClusky S, Vernant P, Lawrance S, Ergintav S, Çakmak R, Özener H, Kadirov F, Guliev İ, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov S, Gomez F, Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. doi: 10.1029/2005JB004051 Google Scholar
  62. Sbeinati MR, Darawcheh R, Mouty M (2005) The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D. Ann Geophys 48(3):347–435Google Scholar
  63. Scherbaum F (1994) Modelling the Roermond earthquake of 1992 April 13 by stochastic simulation of its high-frequency strong ground motion. Geophys J Int 119:31–43CrossRefGoogle Scholar
  64. Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241CrossRefGoogle Scholar
  65. Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. Society of Economic Mineralogist and Paleontologists Special Publication 37, pp 227–264Google Scholar
  66. Shaw B, Jackson J (2010) Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophys J Int 181:966–984. doi: 10.1111/j.1365-246X.2010.04551.x Google Scholar
  67. Snoke JA, Munsay JW, Teague AG, Bollinger GA (1984) A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthq Notes 55(3):15Google Scholar
  68. Soloviev SL, Solovieva ON, Go CN, Kim KS, Shchetnikov NA (2000) Tsunamis in the Mediterranean Sea 2000 B.C.–2000 A.D. In: Advances in natural and technological hazards research, vol 13. Kluwer, DordrechtGoogle Scholar
  69. Tan O, Taymaz T (2006) Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms, Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia Geological Society of America, Special Paper 409, pp 531–578. doi: 10.1130/2006.2409(25)
  70. Taymaz T, Westaway R, Reilinger R (2004) Active faulting and crustal deformation in the Eastern Mediterranean Region. Tectonophysics 391:1–9. doi: 10.1016/j.tecto.2004.07.005 CrossRefGoogle Scholar
  71. Ten Veen JH (2004) Extension of Hellenic forearc shear zones in SW Turkey: the Pliocene-Quaternary deformation of the Esen Çay Basin. J Geodyn 37:181–204CrossRefGoogle Scholar
  72. Ten Veen JH, Kleinspehn KL (2003) Incipient continental collision and plate-boundary curvature: late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece. J Geol Soc Lond 160:161–181CrossRefGoogle Scholar
  73. Ten Veen JH, Boulton SJ, Alçiçek MC (2009) From palaeotectonics to neotectonics in the Neotethys realm: the importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics 73:261–281Google Scholar
  74. Titschack J, Joseph N, Fietzke J, Freiwald A, Bromley RG (2013) Record of a tectonically-controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sediment Geol 283:15–33CrossRefGoogle Scholar
  75. Van Hinsbergen DJJ, Langeris CG, Meulenkamp JE (2005) Revision of the timing, magnitude and distribution of Neogene rotations in the western Aegean region. Tectonophysics 396:1–34CrossRefGoogle Scholar
  76. Verhaert G, Similox-Tohon D, Vandycke S, Sintubin M, Muchez PH (2006) Different stress states in the Burdur-Isparta region (SW Turkey) since Late Miocene times: a reflection of a transient stress regime. J Struct Geol 28:1067–1083CrossRefGoogle Scholar
  77. Woodside J, Mascle J, Huguen C, Volkonskaia A (2000) The Rhodes Basin, a post-Miocene tectonic trough. Mar Geol 165:1–12CrossRefGoogle Scholar
  78. Yagi Y (2004) Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth Planet Space 56:311–316CrossRefGoogle Scholar
  79. Yagi Y, Kikuchi M, Nishimura T (2003) Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake. Geophys Res Lett 30(22):2177. doi: 10.1029/2003GL018189 CrossRefGoogle Scholar
  80. Yagi Y, Mikumo T, Pacheco J, Reyes G (2004) Source rupture process of the Tecoma’n, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull Seismol Soc Am 94:1795–1807CrossRefGoogle Scholar
  81. Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452CrossRefGoogle Scholar
  82. Yılmaztürk A, Burton PW (1999) Earthquake source parameters as inferred from the body waveform modeling southern Turkey. Geodynamics 27:469–499CrossRefGoogle Scholar
  83. Yolsal-Çevikbilen S, Taymaz T (2012) Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics 536–537:61–100CrossRefGoogle Scholar
  84. Yoshida S (1992) Waveform inversion for rupture process using a non-flat seafloor model: application to 1986 Andreanof Island and 1985 Chile earthquake. Tectonophysics 211:45–59CrossRefGoogle Scholar
  85. Yoshida S, Koketsu K, Shibazaki B, Sagiya T, Kato T, Yoshida Y (1996) Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake. J Phys Earth 44:437–454CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Bülent Doğan
    • 1
  • T. Serkan Irmak
    • 2
  • Ahmet Karakaş
    • 1
  • Doğan Kalafat
    • 3
  1. 1.Department of Geological EngineeringKocaeli UniversityKocaeliTurkey
  2. 2.Seismology Section, Department of Geophysical EngineeringKocaeli UniversityKocaeliTurkey
  3. 3.Kandilli Observatory and Earthquake Research InstituteBoğaziçi UniversityIstanbulTurkey

Personalised recommendations