Acta Geodaetica et Geophysica

, Volume 50, Issue 2, pp 133–149 | Cite as

Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian Basin)

  • R Klébesz
  • Z Gráczer
  • Gy Szanyi
  • N Liptai
  • I Kovács
  • L Patkó
  • Zs Pintér
  • Gy Falus
  • V Wesztergom
  • Cs Szabó


The Nógrád-Gömör Volcanic Field (NGVF) is one of the five mantle xenolith bearing alkaline basalt locations in the Carpathian Pannonian Region. This allows us to constrain the structure and properties (e.g. composition, current deformation state, seismic anisotropy, electrical conductivity) of the upper mantle, including the lithosphere-asthenosphere boundary (LAB) using not only geophysical, but also petrologic and geochemical methods. For this pilot study, eight upper mantle xenoliths have been chosen from Bárna-Nagykő, the southernmost location of the NGVF. The aim of this study is estimating the average seismic properties of the underlying mantle. Based on these estimations, the thickness of the anisotropic layer causing the observed average SKS delay time in the area was modelled considering five lineation and foliation end-member orientations. We conclude that a 142–333 km thick layer is required to explain the observed SKS anisotropy, assuming seismic properties calculated by averaging the properties of the eight xenoliths. It is larger than the thickness of the lithospheric mantle. Therefore, the majority of the delay time accumulates in the sublithospheric mantle. However, it is still in question whether a single anisotropic layer, represented by the studied xenoliths, is responsible for the observed SKS anisotropy, as it is assumed beneath the Bakony–Balaton Highland Volcanic Field (Kovács et al. 2012), or the sublithospheric mantle has different layers. In addition, the depths of the Moho and the LAB (\(25\,\pm \,5, 65\,\pm \,10\,\hbox {km}\), respectively) were estimated based on S receiver function analyses of data from three nearby permanent seismological stations.


Seismic anisotropy Mantle xenolith S receiver functions  Lithospheric mantle LAB Moho 



The authors thank V. Baptiste for helpful discussion. We are grateful for the thorough review and constructive comments of K. Hidas and an anonymous reviewer. This research was carried out in the framework of the cooperation agreement (TTK/6109/1/2014 and Sz/156/2014) between the Lithosphere Fluid Research Lab at Department of Petrology and Geochemistry of Eötvös University and the Geodetic and Geophysical Institute of the MTA Research Centre for Astronomy and Earth Sciences. This study was partially supported by the TAMOP-4.2.2.C–11/1/KONV-2012-0015 (Earth-system) project sponsored by the EU and European Social Foundation. IK was supported by the Bolyai Postdoctoral Fellowship Program and a Marie Curie International Reintegration Grant (NAMS-230937).

Supplementary material

40328_2014_94_MOESM1_ESM.pdf (4.8 mb)
Supplementary material 1 (pdf 4874 KB)


  1. Abramson EH, Brown JM, Slutsky LJ, Zaug J (1997) The elastic constants of San Carlos olivine to 17 GPa. J Geophys Res 102:12253–12263. doi: 10.1029/97JB00682 CrossRefGoogle Scholar
  2. Balogh K, Árva-Sós E, Pécskay Z (1986) K/Ar dating of post Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petrogr Szeged 28:75–93Google Scholar
  3. Baptiste V, Tommasi A (2014) Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth 5:45–63. doi: 10.5194/se-5-45-2014 CrossRefGoogle Scholar
  4. Barruol G, Mainprice D (1993) A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Phys Earth Planet Inter 78:281–300. doi: 10.1016/0031-9201(93)90161-2 CrossRefGoogle Scholar
  5. Bascou J, Doucet LS, Saumet S, Ionov DA, Ashchepkov IV, Golovin AV (2011) Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth Planet Sci Lett 304:71–84. doi: 10.1016/j.epsl.2011.01.016 CrossRefGoogle Scholar
  6. Ben-Ismail W, Barruol G, Mainprice D (2001) The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules. Geophys Res Lett 28:2497–2500. doi: 10.1029/2000GL012419 CrossRefGoogle Scholar
  7. Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, LondonGoogle Scholar
  8. Dando BDE, Stuart GW, Houseman GA, Hegedüs E, Brückl E, Radovanovic S (2011) Teleseismic tomography of the mantle in the Carpathian-Pannonian region of central Europe. Geophys J Int 186:11–31. doi: 10.1111/j.1365-246X.2011.04998.x
  9. Dobosi G, Jenner G, Embey-Isztin A, Downes H (2010) Cryptic metasomatism in clino- and orthopyroxene in the upper mantle beneath the Pannonian region. In: Coltorti M (ed) Petrological evolution of the European lithospheric mantle: from Archaean to present day, vol special publication 337. Geological Society, LondonGoogle Scholar
  10. Dricker I, Vinnik L, Roecker S, Makeyeva L (1999) Upper-mantle flow in eastern Europe. Geophys Res Lett 26:1219–1222. doi: 10.1029/1999GL900204 CrossRefGoogle Scholar
  11. Embey-Isztin A et al (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343CrossRefGoogle Scholar
  12. Falus G, Szabo C, Kovacs I, Zajacz Z, Halter W (2007) Symplectite in spinel lherzolite xenoliths from the Little Hungarian Plain, Western Hungary: a key for understanding the complex history of the upper mantle of the Pannonian Basin. Lithos 94:230–247. doi: 10.1016/j.lithos.2006.06.017 CrossRefGoogle Scholar
  13. Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64. doi: 10.1016/j.epsl.2008.04.035 CrossRefGoogle Scholar
  14. Farra V, Vinnik L (2000) Upper mantle stratification by P and S receiver functions. Geophys J Int 141:699–712. doi: 10.1046/j.1365-246x.2000.00118.x CrossRefGoogle Scholar
  15. Fullea J, Lebedev S, Agius MR, Jones AG, Afonso JC (2012) Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation. Geochem Geophys Geosyst 13:Q0AK09. doi: 10.1029/2012GC004138 CrossRefGoogle Scholar
  16. Fullea J, Muller MR, Jones AG (2011) Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: Application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. J Geophys Res 116:B10202. doi: 10.1029/2011JB008544 CrossRefGoogle Scholar
  17. Geissler WH, Sodoudi F, Kind R (2010) Thickness of the central and eastern European lithosphere as seen by S receiver functions. Geophys J Int 181:604–634. doi: 10.1111/j.1365-246X.2010.04548.x Google Scholar
  18. Grad M et al (2006) Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL05. J Geophys Res 111:B03301. doi: 10.1029/2005JB003647 Google Scholar
  19. Harangi S (2001) Neogene to quaternary volcanism of the Carpathian-Pannonian Region - a review. Acta Geol Hung 44:223–258Google Scholar
  20. Hidas K, Falus G, Szabó C, Szabó PJ, Kovács I, Földes T (2007) Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony–Balaton Highland Volcanic Field (Western Hungary). J Geodyn 43:484–503CrossRefGoogle Scholar
  21. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357. doi: 10.1016/0040-1951(93)90126-5 CrossRefGoogle Scholar
  22. Horváth F, Bada G, Szafián P, Tari G, Ádám A (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee DG, Stephenson R (eds) European lithosphere dynamics, vol memoirs 32. The Geological Society of London, London, pp 191–206Google Scholar
  23. Hrubcová P, Środa P, Grad M, Geissler WH, Guterch A, Vozár J, Hegedűs E (2010) From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophys J Int 183:611–633. doi: 10.1111/j.1365-246X.2010.04766.x CrossRefGoogle Scholar
  24. Hurai V, Danišík M, Huraiová M, Paquette J-L, Ádám A (2013) Combined U/Pb and (U-Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Miner Petrol 166:1235–1251. doi: 10.1007/s00410-013-0922-1 CrossRefGoogle Scholar
  25. Isaak DG, Ohno I, Lee PC (2006) The elastic constants of monoclinic single-crystal chrome-diopside to 1,300 K. Phys Chem Miner 32:691–699. doi: 10.1007/s00269-005-0047-9 CrossRefGoogle Scholar
  26. Ivan M, Popa M, Ghica D (2008) SKS splitting observed at Romanian broad-band seismic network. Tectonophysics 462:89–98. doi: 10.1016/j.tecto.2007.12.015 CrossRefGoogle Scholar
  27. Ivan M, Tóth L, Kiszely M (2002) SKS Splitting observed at the Hungarian station PSZ - Geofon Network. J Balk Geophys Soc 5:71–76Google Scholar
  28. Jackson JM, Sinogeikin SV, Bass JD (2007) Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure. Phys Earth Planet Inter 161:1–12. doi: 10.1016/j.pepi.2006.11.002 CrossRefGoogle Scholar
  29. Jones AG, Fishwick S, Evans RL, Muller MR, Fullea J (2013) Velocity-conductivity relations for cratonic lithosphere and their application: example of Southern Africa. Geochem Geophys Geosyst 14:806–827. doi: 10.1002/ggge.20075 CrossRefGoogle Scholar
  30. Jones AG, Plomerova J, Korja T, Sodoudi F, Spakman W (2010) Europe from the bottom up: a statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos 120:14–29. doi: 10.1016/j.lithos.2010.07.013 CrossRefGoogle Scholar
  31. Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22. doi: 10.1016/j.tecto.2006.02.011 CrossRefGoogle Scholar
  32. Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x CrossRefGoogle Scholar
  33. Konečny P, Konečny V, Lexa J, Huraiová M (1995) Mantle xenoliths in alkali basalts of Southern Slovakia. Acta Vulcanol 7:241–247Google Scholar
  34. Kovács I et al (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian-Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179CrossRefGoogle Scholar
  35. Kovács I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region (N-Hungary/S-Slovakia). Miner Petrol 85:269–290CrossRefGoogle Scholar
  36. Kovács I, Zajacz Z, Szabó C (2004) Type-II xenoliths and related metasomatism from the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian region (northern Hungary-southern Slovakia). Tectonophysics 393:139–161. doi: 10.1016/j.tecto.2004.07.032 CrossRefGoogle Scholar
  37. Kumar P, Yuan X, Kind R, Ni J (2006) Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J Geophys Res 111:B06308. doi: 10.1029/2005JB003930 Google Scholar
  38. Kustowski B, Ekström G, Dziewoński AM (2008) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113:B06306. doi: 10.1029/2007JB005169 Google Scholar
  39. Liptai N (2013) Geokémiai jellemvonások és fizikai állapot tanulmányozása nógrád-gömöri felsőköpeny xenolitokon. MSc Thesis, Eötvös University.Google Scholar
  40. Liptai N, Jung H, Park M, Szabó C (2013) Olivine orientation study on upper mantle xenoliths from Bárna-Nagykő, Nógrád-Gömör Volcanic Field (Northern Pannonian Basin, Hungary). Földtani Közlöny 143:371–382 (in Hungarian, with English abstract).Google Scholar
  41. Liptai N, Patkó L, Kovács I, Pintér Z, Hidas K, Tommasi A, Jeffries T, Zajacz Z, Falus G, Szabó C. The upper mantle beneath the Nógrád-Gömör Volcanic Field (Northern Hungary-Southern Slovakia) - an integrated study on spinel lherzolite xenoliths. J Petrol (submitted)Google Scholar
  42. Long MD, Becker TW (2010) Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett 297:341–354. doi: 10.1016/j.epsl.2010.06.036 CrossRefGoogle Scholar
  43. Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393. doi: 10.1016/0098-3004(90)90072-2 CrossRefGoogle Scholar
  44. Michibayashi K, Abe N, Okamato A, Satsukawa T, Michikura K (2006) Seismic anisotropy in the uppermost mantle, back-arc region of the northest Japan arc: petrophyisical analyses of Ichinomegata peridotite xenoliths. Geophys Res Lett 33:L10312CrossRefGoogle Scholar
  45. Mohammadi N, Sodoudi F, Mohammadi E, Sadidkhouy A (2013) New constraints on lithospheric thickness of the Iranian plateau using converted waves. J Seismol 17:883–895CrossRefGoogle Scholar
  46. Pécskay Z et al (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  47. Pera E, Mainprice D, Burlini L (2003) Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy). Tectonophysics 370:11–30. doi: 10.1016/S0040-1951(03)00175-6 CrossRefGoogle Scholar
  48. Plomerová J, Babuška V (2010) Long memory of mantle lithosphere fabric – European LAB constrained from seismic anisotropy. Lithos 120:131–143. doi: 10.1016/j.lithos.2010.01.008 CrossRefGoogle Scholar
  49. Stuart GW et al. (2007) Understanding extension within a convergent orogen: Initial results from the Carpathian Basins Seismic Project. Eos Trans AGU 88:Fall Meet. Suppl., Abstract S41A–0235Google Scholar
  50. Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics 393:119–137CrossRefGoogle Scholar
  51. Szabo C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophysics 208:243–256CrossRefGoogle Scholar
  52. Szabó C, Taylor LA (1994) Mantle petrology and geochemistry beneath the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region. Int Geol Rev 36:328–358CrossRefGoogle Scholar
  53. Tomek Č (1993) Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics 226:417–431. doi: 10.1016/0040-1951(93)90130-C CrossRefGoogle Scholar
  54. Wenk HR (2004) The Texture of rocks in the earth’s deep interior: part II. Application of texturing to the deep earth. In: Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick V (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford, pp 1–11. doi: 10.1016/B0-08-043152-6/01929-X Google Scholar
  55. Yuan X, Kind R, Li X, Wang R (2006) The S receiver functions: synthetics and data example. Geophys J Int 165:555–564CrossRefGoogle Scholar
  56. Zajacz Z, Kovacs I, Szabo C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. J Petrol 48:853–883. doi: 10.1093/petrology/egm004 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • R Klébesz
    • 1
  • Z Gráczer
    • 1
  • Gy Szanyi
    • 1
  • N Liptai
    • 2
  • I Kovács
    • 3
  • L Patkó
    • 2
  • Zs Pintér
    • 2
    • 4
  • Gy Falus
    • 3
  • V Wesztergom
    • 1
  • Cs Szabó
    • 2
  1. 1.Geodetic and Geophysical InstituteMTA Research Centre for Astronomy and Earth SciencesSopronHungary
  2. 2.Lithosphere Fluid Research Lab, Department of Petrology and GeochemistryEötvös UniversityBudapestHungary
  3. 3.Geological and Geophysical Institute of HungaryBudapestHungary
  4. 4.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany

Personalised recommendations