Acta Geodaetica et Geophysica

, Volume 50, Issue 1, pp 21–37

Seismic hazard and risk assessment based on the unified scaling law for earthquakes

  • A. Nekrasova
  • V. G. Kossobokov
  • I. A. Parvez
  • X. Tao


The Unified Scaling Law for Earthquakes (USLE), that generalizes the Gutenberg–Richter recurrence relation, has evident implications since any estimate of seismic hazard depends on the size of territory that is used for investigation, averaging, and extrapolation into the future. Therefore, the hazard may differ dramatically when scaled down to the proportion of the area of interest (e.g. a city) from the enveloping area of investigation. In fact, given the observed patterns of distributed seismic activity the results of multi-scale analysis embedded in USLE approach demonstrate that traditional estimations of seismic hazard and risks for cities and urban agglomerations are usually underestimated. Moreover, the USLE approach provides a significant improvement when compared to the results of probabilistic seismic hazard analysis, e.g. the maps resulted from the Global Seismic Hazard Assessment Project (GSHAP). In this paper, we apply the USLE approach to evaluating seismic hazard and risks to population of the three territories of different size representing a sub-continental and two different regional scales of analysis, i.e. the Himalayas and surroundings, Lake Baikal, and Central China regions.


Seismic hazard Unified scaling law Seismic risk  Peak ground acceleration 


  1. Albarello D, D’Amico V (2008) Testing probabilistic seismic hazard estimates by comparison with observations: an example in Italy. Geophys J Int 175:1088–1094CrossRefGoogle Scholar
  2. Atmanspacher H, Scheingraber H, Voges W (1988) Global scaling properties of a chaotic attractor reconstructed from experimental data. Phys Rev A 37(4):1314–1322CrossRefGoogle Scholar
  3. Bak P, Christensen K, Danon L, Scanlon T (2002) Unified Scaling Law for Earthquakes. Phys Rev Lett 88:178501–178504CrossRefGoogle Scholar
  4. Bormann P (Ed) (2012) New manual of seismological observatory practice (NMSOP-2). IASPEI, GFZ German Research Centre for Geosciences, Potsdam;; doi:10.2312/GFZ.NMSOP-2urn:nbn:de:kobv:b103-NMSOP-2
  5. CENC (2014) China Earthquake Networks Center Catalog.
  6. GHDB (1989) Global Hypocenters Data Base CD-ROM. NEIC/USGS, Denver, CO, 1989 and updates July 2014Google Scholar
  7. Giardini D, Grünthal K, Shedlock P, Zhang (1999) The GSHAP global seismic hazard map. Ann Geofis 42(6):1225–1228Google Scholar
  8. Giardini D, Wössner J, Danciu L (2014) Mapping Europe’s seismic hazard. Eos Trans AGU 95(29):261–262CrossRefGoogle Scholar
  9. GPW (2005) Gridded Population of the World, Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. Accessed 29 May 2012
  10. Gutenberg B, Richter CF (1954) Seismicity of the Earth, 2nd edn. Princeton University Press, Princeton 310 pGoogle Scholar
  11. Kossobokov VG, Mazhkenov SA (1988) Spatial characteristics of similarity for earthquake sequences: Fractality of seismicity. Lecture Notes of the Workshop on Global Geophysical Informatics with Applications to Research in Earthquake Prediction and Reduction of Seismic Risk (15 Nov–16 Dec 1988), ICTP, TriesteGoogle Scholar
  12. Kossobokov VG, Mazhkenov SA (1994) On similarity in the spatial distribution of seismicity. In: Chowdhury DK (ed) Computational Seismology and Geodynamics/AGU, 1. The Union, Washington, pp 6–15Google Scholar
  13. Kossobokov V, Nekrasova A (2010) Global seismic hazard assessment program maps are misleading. Eos Trans AGU 91(52):U13A–0020Google Scholar
  14. Kossobokov V, Nekrasova A (2012) Global seismic hazard assessment program maps are erroneous. Seism Instrum 48(2):162–170. doi:10.3103/S0747923912020065 CrossRefGoogle Scholar
  15. Mandelbrot B (1982) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  16. Molchan G, Kronrod T, Panza GF (1997) Multi-scale seismicity model for seismic risk. Bull Seismol Soc Am 87:1220–1229Google Scholar
  17. Nekrasova A, Kossobokov V (2002) Generalizing the Gutenberg–Richter scaling law. EOS Trans AGU 83(47):NG62B–0958Google Scholar
  18. Nekrasova A, Kossobokov V (2005) Unified Scaling Law for Earthquakes: mega-cities and urban agglomerations. Eos Trans AGU 86(52):S23A–0229Google Scholar
  19. Nekrasova A, Kossobokov V (2006) Unified scaling law for earthquakes in the Lake Baikal region. Doklady Earth Sci 407A(3):484–485CrossRefGoogle Scholar
  20. Nekrasova A, Kossobokov V, Aoudia A, Perezan A, Panza GF (2011) A multiscale application of the Unified Scaling Law for Earthquakes in the Central Mediterranean area and Alpine region. Pure Appl Geophys 168:297–327CrossRefGoogle Scholar
  21. Nekrasova A, Kossobokov V, Peresan A, Magrin A (2014) The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory. Natl Hazards 70(1):629–641. doi:10.1007/s11069-013-0832 CrossRefGoogle Scholar
  22. Nekrasova A, Peresan A, Kossobokov VG, Panza GF (2014) A new probabilistic shift away from seismic hazard reality in Italy? Proceedings of the International School and Workshop on “Nonlinear Mathematical Physics and Natural Hazards”; arXiv:1409.1047v2 [physics.geo-ph]
  23. Okubo PG, Aki K (1987) Fractal geometry in the San Andreas fault system. J Geophys Res 92:345–355CrossRefGoogle Scholar
  24. Panza GF, Peresan A, La Mura C (2013) Seismic hazard and strong ground motion: an operational neo-deterministic approach from national to local scale. In: UNESCO-EOLSS Joint Committee (Eds) Encyclopedia of life support systems (EOLSS), Geophysics and Geochemistry, Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, pp 1–49Google Scholar
  25. Parvez IA, Gusev A, Panza GF, Petukhin A (2001) Preliminary determination of the interdependence among strong motion amplitude, earthquake magnitude and hypocentral distance for the Himalayan region. Geophys J Int 144:577–596CrossRefGoogle Scholar
  26. Parvez IA, Nekrasova A, Kossobokov V (2014) Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unified Scaling Law for Earthquakes. Natl Hazards 71(1):549–562. doi:10.1007/s11069-013-0926-1 CrossRefGoogle Scholar
  27. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25(1):1–32Google Scholar
  28. Shedlock K, Giardini D, Grünthal G, Zhang P (2000) The GSHAP global seismic hazard map. Seismol Res Lett 71(6):679–686CrossRefGoogle Scholar
  29. Stein S, Geller R, Liu M (2012) Why earthquake hazard maps often fail and what to do about it? Tectonophysics 562(563):1–25CrossRefGoogle Scholar
  30. Wasserburg GJ (2010) Comment on “AGU statement: Investigation of Scientists and Officials in L’Aquila, Italy, is unfounded. Eos Trans AGU 91(42):384CrossRefGoogle Scholar
  31. Wyss M, Nekrasova A, Kossobokov V (2012) Errors in expected human losses due to incorrect seismic hazard estimates. Natl Hazards 62(3):927–935. doi:10.1007/s11069-012-0125-5 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2014

Authors and Affiliations

  • A. Nekrasova
    • 1
  • V. G. Kossobokov
    • 1
    • 2
  • I. A. Parvez
    • 3
  • X. Tao
    • 4
  1. 1.Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Institut de Physique du Globe de ParisParisFrance
  3. 3.CSIR Centre for Mathematical Modelling and Computer SimulationBangaloreIndia
  4. 4.Harbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations