Acta Geodaetica et Geophysica

, Volume 49, Issue 4, pp 455–470 | Cite as

Precise orbit determination and accuracy analysis of HY-2A satellite using DORIS Doppler data

  • Qiaoli Kong
  • Jinyun GuoEmail author
  • Cheinway Hwang
  • Fan Gao
  • Hsinfa Lin
  • Chunmei Zhao


HY-2A is the first ocean dynamic environment monitoring satellite of China, and its precise radial orbit is a critical factor to its scientific research application, for example, its orbit can serve as a reference frame for altimeter measurement. In order to realize precise orbit determination, HY-2A is equipped with Doppler orbitography and radiopositioning integrated by satellite (DORIS), retro-reflector array for the satellite laser ranging (SLR) and global positioning system tracking systems. In this study, DORIS Doppler data is used for its good reputation for precise orbit positioning. We described the strategy of orbit determination using dynamic models in detail, and particularly analyzed the relationship between arc length, orbital determination accuracy, and consumed time, and then concluded that 3-day is the optimal arc length. We carried out detail accuracy assessments of external orbit comparison, overlap orbit validation and SLR range validation. Experimental results show that the radial accuracy can reach 0.0154 m for the 3-day arc, and the radial overlap validation accuracy is better than 0.0223 m, and the accuracy of SLR range validation is better than 0.0964 m. Results demonstrate that the DORIS system meets the orbit precision specifications of HY-2A satellite.

Graphical abstract

Difference between computed orbit and the SSALTO orbit in the radial, along track, and cross track directions from 00:00:25 on September 8 to 00:00:25 on September11, 2012 using DORIS Doppler data.


HY-2A Precise orbit determination Orbit assessment DORIS 



We wish to thank the anonymous reviewers for their valuable comments and suggestions. We thank CNES for providing SSALTO precise orbit and thank CDDIS for providing DORIS Doppler data. We thank Prof. Han Litao for his remark. This work was supported partially by the National Natural Science Foundation of China (Grant No. 41374009 & 41201381), Supported by SDUST Research Fund, and Joint Innovative Center for Safe And Effective Mining Technology and Equipment of Coal Resources, Shandong Province, the Public Benefit Scientific Research Project of China (Grant No. 201412001), the Shandong Natural Science Foundation of China (Grant No. ZR2013DM009), the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG, China (Grant No. 2012B02), and the Key Laboratory of Advanced Engineering Surveying of NASMG, China (grant No. TJES1203).


  1. Auriol A, Tourain C (2010) DORIS system: the new age. Adv Space Res 46:1484–1496. doi: 10.1016/j.asr.2010.05.015 CrossRefGoogle Scholar
  2. Balmino G, Barriot JB (1989) Numerical integration techniques revisted. Manuscr Geod 15:1–10Google Scholar
  3. Barlier FC (1978) A thermospheric model based on satellite drag data. Ann Geophys 34:9–24Google Scholar
  4. Doornbos E, Willis P (2007) Analysis of DORIS range-rate residuals for TOPEX/Poseidon, Jason, Envisat and SPOT. Acta Astronaut 60:611–621. doi: 10.1016/j.actaastro.2006.07.012 CrossRefGoogle Scholar
  5. Eanes R, Schuler A (1999) An improved global ocean tide model from TOPEX/POSEIDON altimetry: CSR4.0. In: EGS 24th General Assembly, Hague, the NetherlandsGoogle Scholar
  6. Guo JY, Qin J, Kong QL, Li GW (2012) On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique. Appl Geophys 9:95–107. doi: 10.1007/s11770-012-0319-3 CrossRefGoogle Scholar
  7. Guo JY, Kong QL, Qin J, Sun Y (2013) On precise orbit determination of HY-2 with space geodetic techniques. Acta Geophys 61(3):752–772. doi: 10.2478/s11600-012-0095-8 CrossRefGoogle Scholar
  8. Hwang C, Tseng TP, Lin TJ, Švehla D, Schreiner B (2009) Precise obit determination for the formosat-3/COSMIC satellite mission using GPS. J Geod 83:477–489. doi: 10.1007/s00190-008-0256-3 CrossRefGoogle Scholar
  9. Jayles C, Chauveau JP, Rozo F (2010) DORIS/Jason-2: better than 10cm onboard orbits available for near time altimetry. Adv Space Res 46:1484–1496. doi: 10.1016/j.asr.2010.04.030 CrossRefGoogle Scholar
  10. Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit determination for the GRACE mission using only GPS data. J Geod 80:322–331. doi: 10.1007/s00190-006-0073-5 CrossRefGoogle Scholar
  11. Kong QL, Guo JY, Jian Q, Sun Y (2013) Simulation of centimeter-level precise orbit determination for the HY-2 satellite using DORIS and SLR (in Chinese). Geomat Inf Sci Wuhan Univ 38(6):694–699Google Scholar
  12. Kong QL, Guo JY, Han LT (2013) Simulation of orbit determination of Haiyang-2 satellite on DORIS. Appl Mech Mater 353–356:3456–3459. doi: 10.4028/ CrossRefGoogle Scholar
  13. Liu JH (2013) Satellite orbit determination method with DORIS system (in Chinese). Master thesis, National University of Defense TechnologyGoogle Scholar
  14. Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1 centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS and altimeter data. Mar Geod 26:399–421. doi: 10.1080/01490410490465652 CrossRefGoogle Scholar
  15. Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthche SB, Klosko SM, Dimarzio J, Pavlis DE, Bordyugov O (2011) Status of precise orbit determination for Jason-2 using GPS, SLR, & DORIS data at NASA/GSFC. EGU general assembly 2011: XY159. Geophys Res Abstr 13:10409Google Scholar
  16. McCarthy D D (1996) Effect of solid earth tides. In: IERS conventions 1996. IERS technical note 21: 40–46Google Scholar
  17. McCarthy D D, Petit G (2003) Equations of motion for an artificial earth satellite. In: IERS conventions 2003. IERS technical note 32:106–107Google Scholar
  18. Mercier F, Cerri L, Berthias JP (2010) Jason-2 DORIS phase measurement processing. Adv Space Res 45:1441–1454. doi: 10.1016/j.asr.2009.12.002 CrossRefGoogle Scholar
  19. Montenbruck O, Gill E (2000) Satellite orbits: models, methods, and applications. Springer, BerlinCrossRefGoogle Scholar
  20. Peng DJ, Wu B, Qu WJ (2012) Jason-2 precise orbit determination with DORIS/SLR tracking data (in Chinese). J Astronaut 33(10):1391–1400Google Scholar
  21. Qin XP, Jiao WH, Cheng LY, Huo LY (2005) Evaluation of CHAMP satellite orbit with SLR measurements (in Chinese). Geomat Inf Sci Wuhan Univ 30:38–41Google Scholar
  22. Rim HJ (1992) TOPEX orbit determination using GPS tracking system. Ph.D. thesis, University of Texas at AustinGoogle Scholar
  23. Standish E M (1998) JPL planetary and lunar ephemerides, DE405/LE405. JPL Interoffice Memorandum IOM 1998, 312.F-98-048Google Scholar
  24. Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 1:47–56CrossRefGoogle Scholar
  25. Tseng TP, Hwang C, Yang SK (2012) Assessing attitude error of FORMOSAT-3/COSMIC satellites and its impact on orbit determination. Adv Space Res 49:1301–1312. doi: 10.1016/j.asr.2012.02.007 CrossRefGoogle Scholar
  26. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutle G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36:412–417. doi: 10.1016/j.asr.2005.03.021 CrossRefGoogle Scholar
  27. Willis P, Gobinddass ML, Garayt B, Fagard H (2012) Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. IAG Sympos Ser 136:43–49. doi: 10.1007/978-3-642-20338-1-6 Google Scholar
  28. Willis P, Zelensky N P, Ries J C, Soudarin L, Cerri L, Moreaux G, Lemoine F G, Otten M, Argus D F, Heflin M B (2013) DPOD2008, A DORIS-oriented terrestrial reference frame for precise orbit determination, IAG Symposia Series, Soumis le 29 November 2013Google Scholar
  29. Zelensky NP, Lemoine FG, Ziebart M, Sibthorped A, Willis P, Beckley BD, Klosko SM, Chinn DS, Rowlands DD, Luthcke SB, Pavlis DE, Luceri V (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46:1541–1558. doi: 10.1016/j.asr.2010.05.008 CrossRefGoogle Scholar
  30. Zhao CM, Ou JM, Sheng CZ, Zhang XQ (2013a) Jason-2 orbit determination based on DORIS data (in Chinese). Prog Geophys 28:0049–0057Google Scholar
  31. Zhao G, Zhou XH, Wu B (2013b) Precise orbit determination of Haiyang-2 using satellite laser ranging. Chin Sci Bull 58(6):589–597. doi: 10.1007/s11434-021-5564-6 CrossRefGoogle Scholar
  32. Zhu J, Wang JS, Chen JR, He YF (2013) Centimeter precise orbit determination for HY-2 via DORIS (in Chinese). J Astronaut 34:163–169. doi: 10.3873/j.Issn

Copyright information

© Akadémiai Kiadó 2014

Authors and Affiliations

  • Qiaoli Kong
    • 1
    • 2
  • Jinyun Guo
    • 1
    • 2
    Email author
  • Cheinway Hwang
    • 3
  • Fan Gao
    • 4
  • Hsinfa Lin
    • 3
  • Chunmei Zhao
    • 5
  1. 1.State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and TechnologyQingdaoChina
  2. 2.Key Laboratory of Surveying and Mapping Technology on Island and ReefState Bureau of Surveying and MappingQingdaoChina
  3. 3.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  4. 4.Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina
  5. 5.Chinese Academy of Surveying and MappingBeijingChina

Personalised recommendations