Acta Geodaetica et Geophysica

, Volume 48, Issue 4, pp 389–404 | Cite as

Investigation of crustal motion in Europe by analysing the European VLBI sessions

  • Hana Krásná
  • Claudia Tierno Ros
  • Peter Pavetich
  • Johannes Böhm
  • Tobias Nilsson
  • Harald Schuh
Article

Abstract

Since 1990 the International VLBI Service for Geodesy and Astrometry (IVS) has been performing geodetic Very Long Baseline Interferometry (VLBI) observations within the European geodetic VLBI network. In this work, 114 European VLBI sessions from January 1990 to September 2011 are analysed using the Vienna VLBI Software (VieVS). A total of 58 baselines with lengths ranging from 59 m to 4581 km are investigated and the lengths of most of them indicate repeatabilities at the sub-centimetre level. The horizontal station motions which describe the motion of the Eurasian plate are compared to the NUVEL-1A and MORVEL tectonic plate models. Intraplate crustal motions are investigated by estimating the station velocities with respect to Wettzell (Germany), a station on the geodynamically stable part of Eurasia. The northern part of Europe is dominated by the postglacial isostatic rebound, confirmed by four VLBI sites in this region with an uplift from 2.89±0.71 mm/yr (Svetloe, Russia) to 7.23±1.00 mm/yr (Ny-Ålesund, Norway) with respect to the central part of the European plate. Besides the vertical uplift, these radio telescopes evidence a horizontal motion from the centre of the former ice sheet towards its border. In the southern part of Europe the motion of the VLBI sites is caused by the collision of the African plate with the Eurasian plate, while the stations on the stable part of Europe do not present any significant relative motions. Our results are compared against those by Haas et al. (J. Geodyn. 35:391–414, 2003) and with velocities of the current reference frame of the International Global Navigation Satellite Systems Service.

Keywords

Crustal motion Geodetic VLBI Reference frame Plate tectonics European geodetic VLBI network 

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473 CrossRefGoogle Scholar
  2. Bergstrand S, Scherneck H-G, Lidberg M, Johansson JM (2007) BIFROST: noise properties of GPS time series. In: Tregoning P, Rizos C (eds) Dynamic planet. IAG symposia, vol 130, pp 123–130 CrossRefGoogle Scholar
  3. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: Drewes H (ed) Geodetic reference frames. IAG symposia, vol 134, pp 265–270 CrossRefGoogle Scholar
  4. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219 Google Scholar
  5. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:1–9 Google Scholar
  6. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth. IAG symposia, vol 136, pp 1007–1011 CrossRefGoogle Scholar
  7. Campbell J, Nothnagel A (2000) European VLBI for crustal dynamics. J Geodyn 30:321–326 CrossRefGoogle Scholar
  8. Campbell J, Nothnagel A (2010) Intra-plate deformation in West-Central Europe. J Geodyn 49:130–140 CrossRefGoogle Scholar
  9. Campbell J, Hase H, Nothnagel A, Schuh H, Zarraroa N, Rius A, Sardon E, Tornatore V, Tomasi P (1993) First results of European crustal motion measurements with VLBI. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: crustal dynamics. Geodyn ser, vol 23, pp 397–405 CrossRefGoogle Scholar
  10. Caporali A, Aichhorn C, Barlik M, Becker M, Fejes I et al. (2009) Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics 474(1):295–321 CrossRefGoogle Scholar
  11. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478 CrossRefGoogle Scholar
  12. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(10):2191–2194 CrossRefGoogle Scholar
  13. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80 CrossRefGoogle Scholar
  14. Fejes I (2002) Consortium for Central European GPS Geodynamic Reference Network (CEGRN): concept, objectives and organization. http://www.fomi.hu/cegrn/public/Nice02paperFI.htm. Accessed 5 June 2013
  15. Fey AL, Gordon D, Jacobs CS (2009) The second realization of the International Celestial Reference Frame by Very Long Baseline interferometry. Technical note 35, Frankfurt am Main Google Scholar
  16. Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78:295–303 CrossRefGoogle Scholar
  17. Grenerczy G, Kenyeres A, Fejes I (2000) Present crustal movement and strain distribution in Central Europe inferred from Global Positioning System measurements. J Geophys Res 105(B9):21835–21846 CrossRefGoogle Scholar
  18. Grenerczy G, Sella G, Stein S, Kenyeres A (2005) Tectonic implications of the GPS velocity field in the Northern Adriatic region. Geophys Res Lett 32(16):1–4 CrossRefGoogle Scholar
  19. Haas R, Gueguen E, Scherneck HG, Nothnagel A, Campbell J (2000) Crustal motion results derived from observations in the European geodetic VLBI network. Earth Planets Space 52:759–764 Google Scholar
  20. Haas R, Scherneck HG, Gueguen E, Nothnagel A, Campbell J (2002) Large-scale strain-rates in Europe derived from observations in the European geodetic VLBI network. EGU Stephan Mueller Spec Publ Ser 2:139–152 CrossRefGoogle Scholar
  21. Haas R, Nothnagel A, Campbell J, Gueguen E (2003) Recent crustal movements observed with the European VLBI network: geodetic analysis and results. J Geodyn 35:391–414 CrossRefGoogle Scholar
  22. Johansson JM, Davis JL, Scherneck H-G, Milne GA, Vermeer M et al. (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia, 1. Geodetic results. J Geophys Res 107:1–28 CrossRefGoogle Scholar
  23. Krásná H, Böhm J, Plank L, Nilsson T, Schuh H (2013) Atmospheric effects on VLBI-derived terrestrial and celestial reference frames. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. IAG symposia, vol 139. doi:10.1007/978-3-642-37222-3_26 Google Scholar
  24. Lambeck K, Smither C, Johnston P (1998) Sea-level change, glacial rebound and mantle viscosity for Northern Europe. Geophys J Int 134(1):102–144 CrossRefGoogle Scholar
  25. Lyard F, Lefévre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415 CrossRefGoogle Scholar
  26. Ma C, Ryan JW (1998) NASA space geodesy program-GSFC data analysis-1998. VLBI geodetic results 1979–1998 Google Scholar
  27. Malkin Z, Panafidina N, Skurikhina E (2001) Length variations of European baselines derived from VLBI and GPS observations. In: Behrend D, Rius A (eds) Proc 15th working meeting on EVGA, pp 116–123 Google Scholar
  28. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–2385 CrossRefGoogle Scholar
  29. Nesterov N, Volvach A (1999) Simeiz VLBI station. IVS Annu Rep 1999:96–100 Google Scholar
  30. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8):787–792 CrossRefGoogle Scholar
  31. Petit G, Luzum B (2010) IERS conventions 2010. Technical note 36, Frankfurt am Main Google Scholar
  32. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in VLBI observations. J Geophys Res 109:1–14 CrossRefGoogle Scholar
  33. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16:483–494 CrossRefGoogle Scholar
  34. Sarti P, Negusini M, Abbondanza C (2010) Improved geodetic European very-long-baseline interferometry solution using models of antenna gravitational deformation. Ann Geophys 53:5–6 Google Scholar
  35. Scherneck HG (1991) A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys J Int 106:677–694 CrossRefGoogle Scholar
  36. Scherneck H-G, Johansson JM, Koivula H, van Dam T, Davis JL (2003) Vertical crustal motion observed in the BIFROST project. J Geodyn 35:425–441 CrossRefGoogle Scholar
  37. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80 CrossRefGoogle Scholar
  38. Schuh H, Böhm J (2013) Very long baseline interferometry for geodesy and astrometry. In: Xu G (ed) Sci geod II. Innovations and future developments, pp 339–376 Google Scholar
  39. Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454 CrossRefGoogle Scholar
  40. Tomasi P, Mantovani F, Negusini M, Orfei A, Sarti P (1997) Activities and recent results in geodynamics. In: Proc 12th working meeting on EVGA, pp 102–110 Google Scholar
  41. Vennebusch M (2003) Investigations on European baseline rates. In: Proc 16th working meeting on EVGA, pp 219–226 Google Scholar
  42. Ward SN (1994) Constraints on the seismotectonics of the Central Mediterranean from very long baseline interferometry. Geophys J Int 117:441–452 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Hana Krásná
    • 1
  • Claudia Tierno Ros
    • 1
  • Peter Pavetich
    • 1
  • Johannes Böhm
    • 1
  • Tobias Nilsson
    • 2
  • Harald Schuh
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.DeutschesGeoForschungsZentrum GFZPotsdamGermany

Personalised recommendations