Acta Geodaetica et Geophysica

, Volume 48, Issue 2, pp 209–220 | Cite as

Ambient seismic noise Rayleigh wave tomography for the Pannonian basin

  • Gyöngyvér Szanyi
  • Zoltán Gráczer
  • Erzsébet Győri


We studied the Rayleigh wave group velocities beneath Hungary using ambient seismic noise tomography. Noise data were gathered from 17 broadband seismological stations in and around the Pannonian basin. The cross-correlation method was used to calculate the Green’s functions. Group velocities belonging to the fundamental mode Rayleigh waves were determined by multiple filter technique. We measured the dispersion curves for each station pair in a period range of 7–28 s and computed maps of group velocity distribution using a 2D tomography method. The group velocity maps of 7–14 s periods correlate well with sedimentary thickness and regional geology. Velocity anomalies observed at longer periods reflect the effect of the crustal and mantle structural features.


Pannonian basin Ambient seismic noise Cross-correlation Surface wave tomography 



The authors are indebted to Professor Tatiana B. Yanovskaya of the University of St. Petersburg, Russia for providing the tomographic inversion program and to Robert B. Herrmann for making freely available his software package called “Computer programs in seismology”.

We are very grateful for allowing us to use seismic data and for the instrument parameters to the following people and institutions: Mladen Živčić at the Slovenian Environment Agency; Helmut Hausmann at the Abteilung für Geophysik—Seismologie at Zentralanstalt für Meteorologie und Geodynamik; Constantin Ionescu at the Romanian seismological observatory; Jana Pazdírková at Institute of Physics of the Earth, Masaryk University Brno and Krisztián Csicsay at Department of Seismology, Geophysical Institute, Slovak Academy of Sciences.

This study was supported by the TAMOP-4.2.2.C–11/1/KONV-2012-0015 (Earth-system) project sponsored by the EU and European Social Foundation and the Hungarian Scientific Research Fund under Grant OTKA K105399.

All figures were generated with the Generic Mapping Tools (GMT) data processing and display software package (Wessel and Smith 1991, 1998).


  1. Ádám A, Bielik M (1998) The crustal and upper-mantle geophysical signature of narrow continental rifts in the Pannonian basin. Geophys J Int 134(1):157–171 CrossRefGoogle Scholar
  2. Babuška V, Plomerová J, Sileny J (1984) Spatial variations of P residuals and deep structure of the European lithosphere. Geophys J R Astron Soc 79:363–383 CrossRefGoogle Scholar
  3. Bada G, Horváth F, Cloetingh S, Coblentz DD, Tóth T (2001) Role of topography-induced gravitational stresses in basin inversion: the case study of the Pannonian basin. Tectonics 20:343–363 CrossRefGoogle Scholar
  4. Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58(1):165–180 CrossRefGoogle Scholar
  5. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x CrossRefGoogle Scholar
  6. Bensen GD, Ritzwoller MH, Shapiro NM (2008) Broadband ambient noise surface wave tomography across the United States. J Geophys Res 113:B05306. doi: 200810.1029/2007JB005248 CrossRefGoogle Scholar
  7. Boaga J, Vaccari F, Panza GF (2010) Shear wave structural models of Venice Plain, Italy, from time cross correlation of seismic noise. Eng Geol 116(3–4):189–195 CrossRefGoogle Scholar
  8. Bondár I, Bus Z, Zivcic M, Costa G, Levshin A (1996) Rayleigh wave group and phase velocity measurements in the Pannonian basin. In: Special publications of the geological society of Greece, vol 6, pp 73–86 Google Scholar
  9. Bus Z (2003) S-wave velocity structure beneath the Mátra Mountains (Hungary) inferred from teleseismic receiver functions. Acta Geod Geophys Hung 38(1):93–102. doi: 10.1556/AGeod.38.2003.1.11 CrossRefGoogle Scholar
  10. Bus Z (2004) A Kárpát-medence szeizmikus hullámsebesség-eloszlásának tomográfiai vizsgálata. PhD thesis, Eötvös Loránd Tudományegyetem, Budapest Google Scholar
  11. Calcagnile G, Panza GF (1990) Crustal and upper mantle structure of the Mediterranean area derived from surface-wave data. Phys Earth Planet Inter 60:163–168 CrossRefGoogle Scholar
  12. Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299(5606):547–549. doi: 10.1126/science.1078551 CrossRefGoogle Scholar
  13. Dando BDE, Stuart GW, Houseman GA, Hegedűs E, Brückl E, Radovanović S (2011) Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe. Geophys J Int 186(1):11–31 CrossRefGoogle Scholar
  14. Ditmar PG, Yanovskaya TB (1987) Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities. Phys Solid Earth, Izv Acad Sci USSR 23(6):470–477 Google Scholar
  15. Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444 Google Scholar
  16. Fan G, Wallace TC (1998) Tomographic imaging of deep velocity structure beneath the eastern and southern Carpathians, Romania: implications for continental collision. J Geophys Res 103(B2):2705–2723 CrossRefGoogle Scholar
  17. Gaite B, Iglesias A, Villaseñor A, Herraiz M, Pacheco JF (2012) Crustal structure of Mexico and surrounding regions from seismic ambient noise tomography. Geophys J Int 188(3):1413–1424. doi: 10.1111/j.1365-246X.2011.05339.x CrossRefGoogle Scholar
  18. Gráczer Z, Wéber Z (2012) One-dimensional P-wave velocity model for the territory of Hungary from local earthquake data. Acta Geod Geophys Hung 47(3):344–357 CrossRefGoogle Scholar
  19. Grad M, Guterch A, Keller G, Janik T, Hegedűs E, Vozár J, Ślaczka A, Tiira T, Yliniemi J (2006) Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL05. J Geophys Res 111:B03301 CrossRefGoogle Scholar
  20. Grad M, Tiira T, ECS Working Group (2009) The Moho depth map of the European Plate. Geophys J Int 176(1):279–292 CrossRefGoogle Scholar
  21. Granet M, Trampert J (1989) Large-scale P-velocity structures in the Euro-Mediterranean area. Geophys J Int 99:583–594 CrossRefGoogle Scholar
  22. Guterch A, Grad M, Keller GR, Posgay K, Vozár J, Špičák A, Brückl E, Hajnal Z, Thybo H, Oguz S (2000) CELEBRATION 2000: huge seismic experiment in Central Europe. Geol Carpath 51:413–414 Google Scholar
  23. Guterch A, Grad M, Špičák A, Brückl E, Hegedűs E, Keller GR, Thybo H (2003) Special contribution: an overview of recent seismic refraction experiments in Central Europe. Stud Geophys Geod 47(3):651–657 CrossRefGoogle Scholar
  24. He Z, Ye T, Su W (2005) 3-D velocity structure of the middle and upper crust in the Yunnan region. China Pure Appl Geophys 162(12):2355–2368 CrossRefGoogle Scholar
  25. Hearn TM (1999) Uppermost mantle velocities and anisotropy beneath Europe. J Geophys Res 104(B7):15123–15139. doi: 199910.1029/1998JB900088 CrossRefGoogle Scholar
  26. Herrmann R (1973) Some aspects of band-pass filtering of surface waves. Bull Seismol Soc Am 63(2):663 Google Scholar
  27. Herrmann RB, Ammon CJ (2002) Computer programs in seismology: surface waves, receiver functions and crustal structure. Saint Louis University, Missouri Google Scholar
  28. Hetényi G, Bus Z (2007) Shear wave velocity and crustal thickness in the Pannonian basin from receiver function inversions at four permanent stations in Hungary. J Seismol 11:405–414. doi: 10.1007/s10950-007-9060-4 CrossRefGoogle Scholar
  29. Hetényi G, Stuart GW, Houseman GA, Horváth F, Hegedűs E, Brückl E (2009) Anomalously deep mantle transition zone below Central Europe: evidence of lithospheric instability. Geophys Res Lett 36(21):L21307 CrossRefGoogle Scholar
  30. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226(1):333–357 CrossRefGoogle Scholar
  31. Horváth F (1995) Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Mar Petroleum Geol 12(8):837–844 CrossRefGoogle Scholar
  32. Horváth F (2007) A pannon-medence geodinamikája—eszmetörténeti tanulmány és geofizikai szintézis. PhD thesis, Eötvös Loránd Tudományegyetem, Budapest Google Scholar
  33. Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 266(1):287–300 CrossRefGoogle Scholar
  34. Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Grenerczy G, Síkhegyi F, Szafián P, Székely B, Timár G, Tóth L, Tóth T (2006) Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text. Magy Geofiz 47:133–137 Google Scholar
  35. Hovland J, Gubbins D, Husebye ES (1981) Upper mantle heterogeneities beneath Central Europe. Geophys J R Astron Soc 66:261–284 CrossRefGoogle Scholar
  36. Kim S, Nyblade AA, Rhie J, Baag CE, Kang TS (2012) Crustal S-wave velocity structure of the Main Ethiopian Rift from ambient noise tomography. Geophys J Int 191(2):865–878. doi: 10.1111/j.1365-246X.2012.05664.x CrossRefGoogle Scholar
  37. Larose E (2004) Imaging from one-bit correlations of wideband diffuse wave fields. J Appl Phys 95(12):8393. doi: 10.1063/1.1739529 CrossRefGoogle Scholar
  38. Larose E, Derode A, Clorennec D, Margerin L, Campillo M (2005) Passive retrieval of Rayleigh waves in disordered elastic media. Phys Rev E 72(4):046607. doi: 10.1103/PhysRevE.72.046607 CrossRefGoogle Scholar
  39. Lenkey L (1999) Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution. PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands Google Scholar
  40. Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. Neotectonics and surface processes: the Pannonian basin and Alpine/Carpathian system 3:29–40 Google Scholar
  41. Li H, Li S, Song XD, Gong M, Li X, Jia J (2012) Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys J Int. doi: 10.1111/j.1365-246X.2011.05205.x Google Scholar
  42. Lobkis OI, Weaver RL (2001) On the emergence of the Green’s function in the correlations of a diffuse field. J Acoust Soc Am 110:3011. doi: 10.1121/1.1417528 CrossRefGoogle Scholar
  43. Mele G, Rovelli A, Seber D, Hearn TM, Barazangi M (1998) Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and surrounding regions. J Geophys Res 103:12529–12544 CrossRefGoogle Scholar
  44. Mónus P (1995) Travel times curves and crustal velocity model for the Pannonian basin. MTA GGKI Technical Report Google Scholar
  45. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108(B2):ESE 1–ESE 23 CrossRefGoogle Scholar
  46. Posgay K, Albu I, Ráner G, Varga G (1986) Characteristics of the reflecting layers in the Earth’s crust and upper mantle in Hungary. In: Reflection seismology: a global perspective. AGU geodyn ser, vol 13, pp 55–65 CrossRefGoogle Scholar
  47. Posgay K, Bodoky T, Hegedűs E, Kovácsvölgyi S, Lenkey L, Szafián P, Takács E, Timár Z, Varga G (1995) Asthenospheric structure beneath a Neogene basin in southeast Hungary. Tectonophysics 252:467–484 CrossRefGoogle Scholar
  48. Ratschbacher L, Merle O, Davy P, Cobbold P (1991) Lateral extrusion in the Eastern Alps, part 1: boundary conditions and experiments scaled for gravity. Tectonics 10(2):245–256 CrossRefGoogle Scholar
  49. Royden L, Horváth F (1988) The Pannonian basin: a study in basin evolution. Memoir, vol 45. American Association of Petroleum Geologists, Tulsa, pp 27–48 Google Scholar
  50. Royden LH, Horváth F, Burchfiel B (1982) Transform faulting, extension, and subduction in the Carpathian Pannonian region. Geol Soc Am Bull 93(8):717–725 CrossRefGoogle Scholar
  51. Sabra KG, Gerstoft P, Fehler MC, Gerstoft P, Roux P, Kuperman WA, Kuperman WA, Fehler MC (2005) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32:L03310 CrossRefGoogle Scholar
  52. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:5 CrossRefGoogle Scholar
  53. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715):1615–1618. doi: 10.1126/science.1108339 CrossRefGoogle Scholar
  54. Spakman W, van der Lee S, van der Hilst R (1993) Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys Earth Planet Inter 79:3–74 CrossRefGoogle Scholar
  55. Szafián P, Horváth F, Cloetingh S (1997) Gravity constraints on the crustal structure and slab evolution along a transcarpathian transect. Tectonophysics 272(2):233–247 CrossRefGoogle Scholar
  56. Verbeke J, Boschi L, Stehly L, Kissling E, Michelini A (2012) High-resolution Rayleigh-wave velocity maps of Central Europe from a dense ambient-noise data set. Geophys J Int 188(3):1173–1187. doi: 10.1111/j.1365-246X.2011.05308.x CrossRefGoogle Scholar
  57. Villaseñor A, Ritzwoller M, Levshin A, Barmin M, Engdahl E, Spakman W, Trampert J (2001) Shear velocity structure of central Eurasia from inversion of surface wave velocities. Phys Earth Planet Inter 123(2–4):169–184 CrossRefGoogle Scholar
  58. Villaseñor A, Yang Y, Ritzwoller MH, Gallart J (2007) Ambient noise surface wave tomography of the Iberian Peninsula: implications for shallow seismic structure. Geophys Res Lett 34:11304 CrossRefGoogle Scholar
  59. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13):134301 CrossRefGoogle Scholar
  60. Wéber Z (2002) Imaging Pn velocities beneath the Pannonian basin. Phys Earth Planet Inter 129(3–4):283–300. doi: 10.1016/S0031-9201(01)00299-0 CrossRefGoogle Scholar
  61. Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans 72:441–446 CrossRefGoogle Scholar
  62. Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. Eos Trans 79:579 CrossRefGoogle Scholar
  63. Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168(1):259–274. doi: 10.1111/j.1365-246X.2006.03203.x CrossRefGoogle Scholar
  64. Yanovskaya TB, Ditmar PG (1990) Smoothness criteria in surface wave tomography. Geophys J Int 102(1):63–72 CrossRefGoogle Scholar
  65. Yanovskaya TB, Kozhevnikov VM (2003) 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Phys Earth Planet Inter 138(3–4):263–278 CrossRefGoogle Scholar
  66. Yao H, Van Der Hilst RD, De Hoop MV (2006) Surface wave array tomography in SE Tibet from ambient seismic noise and two station analysis—I. Phase velocity maps. Geophys J Int 166(2):732–744 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Gyöngyvér Szanyi
    • 1
  • Zoltán Gráczer
    • 1
  • Erzsébet Győri
    • 1
  1. 1.MTA CSFK GGIBudapestHungary

Personalised recommendations