SeMA Journal

pp 1–11 | Cite as

A convergence criterion for tangent hyperbolic fluid along a stretching wall subjected to inclined electromagnetic field

  • Emran Khoshrouye GhiasiEmail author
  • Reza SalehEmail author


The homotopy-based approach is a useful tool for solving nonlinear partial differential equations (PDEs) in physics and engineering. Our aim here is to optimize this approach by generating a convergence criterion for tangent hyperbolic fluid along a stretching wall with magnetic force. To this end, the governing partial differential equations (PDEs) get transformed to the dimensionless form via similarity variables. A comparison of the homotopy-based approach for the skin friction coefficient with different solution methodologies shows that the 9th-order approximate solution together with \( \hbar = - \,0. 5 2 3 \) will certainly achieve a very minor error for the present system.


Homotopy-based approach Convergence CPU time Tangent hyperbolic fluid Magnetic strength 


\( {\text{T}} \)

Cauchy stress tensor [Pa]

\( p \)

Hydrostatic pressure [Pa]

\( {\text{I}} \)

Identity tensor

\( n \)

Power-law index

\( u \), \( v \)

Velocity components along \( x \)- and \( y \)-directions, respectively [m s−1]

\( B_{0} \)

Magnetic field strength [kg s−2 A−1]

\( U_{w} \)

Velocity at the wall [m s−1]

\( b \)

Stretching rate [s−1]

\( f \)

Similarity function

\( We \)

Weissenberg number

\( M \)

Magnetic field parameter

\( C_{f} \)

Skin friction coefficient

\( Re_{x} \)

Reynolds number

Greek symbols

\( \varvec{\tau} \)

Viscous stress tensor [Pa]

\( \mu_{0} \)

Initial shear rate viscosity [kg m−1 s−1]

\( \mu_{\infty } \)

Infinite shear rate viscosity [kg m−1 s−1]

\( \varGamma \)

Time constant [s]

\( \dot{\gamma } \)

Shear rate [s−1]

\( \varPi \)

Second invariant of the viscous stress tensor

\( \upsilon \)

Kinematic viscosity [m2 s−1]

\( \sigma \)

Electrical conductivity [S m−1]

\( \rho \)

Fluid density [kg m−3]

\( \alpha \)

Inclination angle of the magnetic field

\( \eta \)

Similarity variable

\( \tau_{w} \)

Wall shear stress [Pa]


\( \infty \)

Condition at the infinite medium

\( i \), \( j \)

Tensor index

Mathematics Subject Classification

76W05 76D05 76M99 



  1. 1.
    Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. Commun. Heat Mass Transfer 34, 380–387 (2007)CrossRefGoogle Scholar
  2. 2.
    Abbasbandy, S., Mustafa, M.: Analytical and numerical approaches for Falkner-Skan flow of MHD Maxwell fluid using a non-Fourier heat flux model. Int. J. Numer. Methods Heat Fluid Flow 28, 1539-1555 (2018)Google Scholar
  3. 3.
    Abbasi, F.M., Mustafa, M., Shehzad, S.A., Alhuthali, M.S., Hayat, T.: Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin. Phys. B 25, 1–7 (2016)Google Scholar
  4. 4.
    Ahmad Soltani, L., Shivanian, E., Ezzati, R.: Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: exact and shooting homotopy analysis solution. Appl. Therm. Eng. 103, 537–542 (2016)CrossRefGoogle Scholar
  5. 5.
    Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J. Phys. 87, 1121–1124 (2013)CrossRefGoogle Scholar
  6. 6.
    Fang, T., Zhang, J., Yao, S.: Slip MHD viscous flow over a stretching sheet-An exact solution. Commun. Nonlinear Sci. Numer. Simulat. 14, 3731–3737 (2009)CrossRefGoogle Scholar
  7. 7.
    Farooq, U., Zhao, Y.L., Hayat, T., Alsaedi, A., Liao, S.J.: Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nano-fluid. Comput. Fluids 111, 59-75 (2015)Google Scholar
  8. 8.
    Fitzpatrick, P.M.: Advanced calculus: A course in mathematical analysis. PWS Publishing Company, Boston (1996)Google Scholar
  9. 9.
    Hashmi, M.S., Khan, N., Mahmood, T., Shehzad, S.A.: Effect of magnetic field on mixed convection flow of Oldroyd-B nanofluid induced by two infinite isothermal stretching disks. Int. J. Therm. Sci. 111, 463–474 (2017)CrossRefGoogle Scholar
  10. 10.
    Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hayat, T., Shafiq, A., Alsaedi, A.: Characteristics of magnetic field and melting heat transfer in stagnation point flow of Tangent-hyperbolic fluid. J. Magn. Magn. Mater. 405, 97–106 (2016)CrossRefGoogle Scholar
  12. 12.
    Hayat, T., Qayyum, S., Alsaedi, A., Shehzad, S.A.: Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection. J. Mol. Liq. 223, 969–978 (2016)CrossRefGoogle Scholar
  13. 13.
    Hayat, T., Khan, M.I., Waqas, M., Alsaedi, A.: Stagnation point flow of hyperbolic tangent fluid with Soret-Dufour effects. Results Phys. 7, 2711–2717 (2017)CrossRefGoogle Scholar
  14. 14.
    Hayat, T., Khan, M.I., Waqas, M., Alsaedi, A.: Radiative flow of hyperbolic tangent liquid subject to Joule heating. Results Phys. 7, 2197–2203 (2017)CrossRefGoogle Scholar
  15. 15.
    Hayat, T., Mumtaz, M., Shafiq, A., Alsaedi, A.: Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Appl. Math. Mech.-Engl. Ed. 38, 271–288 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hayat, T., Muhammad, K., Alsaedi, A., Asghar, S.: Thermodynamics by melting in flow of an Oldroyd-B material. J. Braz. Soc. Mech. Sci. Eng. 40, 1–11 (2018)CrossRefGoogle Scholar
  17. 17.
    Hussain, A., Malik, M.Y., Salahuddin, T., Rubab, A., Khan, M.: Effects of viscous dissipation on MHD tangent hyperbolic fluid over a nonlinear stretching sheet with convective boundary conditions. Results Phys. 7, 3502–3509 (2017)CrossRefGoogle Scholar
  18. 18.
    Khan, I., Malik, M.Y., Salahuddin, T., Khan, M., Rehman, K.U.: Homogeneous-heterogeneous reactions in MHD flow of Powell-Eyring fluid over a stretching sheet with Newtonian heating. Neural Comput. Appl. 30, 3581–3588 (2018)CrossRefGoogle Scholar
  19. 19.
    Khan, M., Irfan, M., Khan, W.A.: Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport. Pramana 92, 1–9 (2019)CrossRefGoogle Scholar
  20. 20.
    Khoshrouye Ghiasi, E., Saleh, R.: Unsteady shrinking embedded horizontal sheet subjected to inclined Lorentz force and Joule heating, an analytical solution. Results Phys. 11, 65–71 (2018)CrossRefGoogle Scholar
  21. 21.
    Khoshrouye Ghiasi, E., Saleh, R.: Non-dimensional optimization of magnetohydrodynamic Falkner-Skan fluid flow. INAE Lett. 3, 143–147 (2018)CrossRefGoogle Scholar
  22. 22.
    Khoshrouye Ghiasi, E., Saleh, R.: Optimal homotopy asymptotic method-based Galerkin approach for solving generalized Blasius boundary value problem. J. Adv. Phys. 7, 408–411 (2018)Google Scholar
  23. 23.
    Khoshrouye Ghiasi, E., Saleh, R.: Constructing analytic solutions on the Tricomi equation. Open Phys. 16, 143–148 (2018)CrossRefGoogle Scholar
  24. 24.
    Khoshrouye Ghiasi, E., Saleh, R.: Nonlinear stability and thermomechanical analysis of hydromagnetic Falkner-Skan Casson conjugate fluid flow over an angular-geometric surface based on Buongiorno’s model using homotopy analysis method and its extension. Pramana 92, 1–12 (2019)CrossRefGoogle Scholar
  25. 25.
    Khoshrouye Ghiasi, E., Saleh, R.: Homotopy analysis method for the Sakiadis flow of a thixotropic fluid. Eur. Phys. J. Plus 134, 1–9 (2019)CrossRefGoogle Scholar
  26. 26.
    Khoshrouye Ghiasi, E., Saleh, R.: Analytical and numerical solutions to the 2D Sakiadis flow of Casson fluid with cross diffusion, inclined magnetic force, viscous dissipation and thermal radiation based on Buongiorno’s mathematical model. CFD Lett. 11, 40–54 (2019)Google Scholar
  27. 27.
    Khoshrouye Ghiasi, E., Saleh, R.: 2D flow of Casson fluid with non-uniform heat source/sink and Joule heating. Front. Heat Mass Transfer 12, 1–7 (2019)Google Scholar
  28. 28.
    Liao, S.J.: Beyond perturbation: Introduction to the homotopy analysis method. Chapman & Hall/CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  29. 29.
    Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet. Int. J. Nonlinear Mech. 71, 22–29 (2015)CrossRefGoogle Scholar
  30. 30.
    Nadeem, S., Akbar, N.S.: Numerical analysis of peristaltic transport of a tangent hyperbolic fluid in an endoscope. J. Aerospace Eng. 24, 309–317 (2011)CrossRefGoogle Scholar
  31. 31.
    Pop, A., Ingham, D.B.: Convective heat transfer: Mathematical and computational modeling of viscous fluids and porous media. Pergamon, Oxford (2001)Google Scholar
  32. 32.
    Qayyum, S., Khan, R., Habib, H.: Simultaneous effects of melting heat transfer and inclined magnetic field flow of tangent hyperbolic fluid over a nonlinear stretching surface with homogeneous-heterogeneous reactions. Int. J. Mech. Sci. 133, 1–10 (2017)CrossRefGoogle Scholar
  33. 33.
    Qayyum, S., Hayat, T., Shehzad, S.A., Alsaedi, A.: Mixed convection and heat generation/absorption aspects in MHD flow of tangent-hyperbolic nanoliquid with Newtonian hast/mass transfer. Rad. Phys. Chem. 144, 396–404 (2018)CrossRefGoogle Scholar
  34. 34.
    Shafiq, A., Hammouch, Z., Sindhu, T.N.: Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating. Int. J. Mech. Sci. 133, 759–766 (2017)CrossRefGoogle Scholar
  35. 35.
    Shehzad, S.A., Hayat, T., Alsaedi, A.: MHD flow of a Casson fluid with power law heat flux and heat source. Comput. Appl. Math. 37, 2932–2942 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tanner, R.I.: Engineering rheology, 2nd edn. Oxford University Press, New York (2000)zbMATHGoogle Scholar
  37. 37.
    Tropea, C., Yarin, A.L., Foss, J.F.: Springer handbook of experimental fluid mechanics. Springer, Berlin (2007)CrossRefGoogle Scholar
  38. 38.
    Vajravelu, K., Sarojamma, G., Sreelakshmi, K., Kalyani, C.: Dual solutions of an unsteady flow, heat and mass transfer of an electrically conducting fluid over a shrinking sheet in the presence of radiation and viscous dissipation. Int. J. Mech. Sci. 130, 119–132 (2017)CrossRefGoogle Scholar
  39. 39.
    Zhu, J., Yang, D., Zheng, L., Zhang, X.: Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid. Appl. Math. Lett. 52, 183–191 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCollege of Engineering, Mashhad Branch, Islamic Azad UniversityMashhadIran

Personalised recommendations