Advertisement

Integrability of the Basener–Ross model with time-dependent coefficients

  • F. Güngör
  • P. J. TorresEmail author
Article

Abstract

The Basener–Ross system is a known model in Population dynamics for the interaction of consumers and resources in an isolated habitat. For an extended version with time-dependent coefficients as a model of possible variations of the environmental conditions, some relations among the coefficients are provided leading to the integrability of the system.

Keywords

Basener–Ross model Predator–prey Integrability Lie symmetry Exact solution 

Mathematics Subject Classification

34A05 34C14 92D25 

Notes

Acknowledgements

F.G. would like to thank Prof. P.J. Torres for the kind invitation and support to visit the Department of Applied Mathematics of the University of Granada. This work is partially supported by MINECO and ERDF project MTM2017-82348-C2-1-P.

References

  1. 1.
    Amarasekare, P.: Effects of temperature on consumer–resource interactions. J. Anim. Ecol. 84, 665–679 (2015)CrossRefGoogle Scholar
  2. 2.
    Basener, W., Brooks, B., Radin, M., Wiandt, T.: Rat instigated human population collapse on Easter Island. Nonlinear Dyn. Psychol. Life Sci. 12(3), 227–240 (2008)Google Scholar
  3. 3.
    Basener, B., Ross, D.S.: Booming and crashing populations and Easter Island. SIAM J. Appl. Math. 65(2), 684–701 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bologna, M., Flores, J.C.: A simple mathematical model of society collapse applied to Easter Island. Europhys. Lett. 81, 48006 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brandt, G., Merico, A.: The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 3, 1–13 (2015)CrossRefGoogle Scholar
  6. 6.
    Brown, J.S.: Coexistence on a seasonal resource. Am. Nat. 133(2), 168–182 (1989)CrossRefGoogle Scholar
  7. 7.
    Carinena, J., Güngör, F., Torres, P.J.: Invariance of second order ordinary differential equations under two-dimensional affine subalgebras of EP Lie algebra (2017). arXiv:1712.00286 [math.CA] (preprint)
  8. 8.
    Coleman, B.D.: Nonautonomous logistic equations as models of the adjustment of populations to environmental change. Math. Biosci. 45, 159–173 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feng, M., Fan, M., Yuan, X., Zhu, H.: Effect of seasonal changing temperature on the growth of phytoplankton. Math. Biosci. Eng. 14(5–6), 1091–1117 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Grundland, A.M., Levi, D.: On higher-order Riccati equations as Bäcklund transformations. J. Phys. A Math. Gener. 32(21), 3931–3937 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Huppert, A., Blasius, B., Olinky, R., Stone, L.: A model for seasonal phytoplankton blooms. J. Theor. Biol. 236, 276–290 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Koss, L.: Ordinary differential equations and Easter Island: a survey of recent research developments on the relationship between humans, trees, and rats. Eur. J. Math. (2018).  https://doi.org/10.1007/s40879-018-0242-0. (in press)Google Scholar
  13. 13.
    Meyer, P.S., Ausubel, J.H.: Carrying capacity: a model with logistically varying limits. Technol. Forecast. Soc. Change 61, 209–214 (1999)CrossRefGoogle Scholar
  14. 14.
    Nucci, M.C., Sanchini, G.: Symmetries, Lagrangians and conservation laws of an Easter island population model. Symmetry 7(3), 1613 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Scheffer, M., Rinaldi, S., Kuznetsov, Y.A., van Nes, E.H.: Seasonal dynamics of Daphnia and Algae explained as a periodically forced predator–prey system. Oikos 80(3), 519–532 (1997)CrossRefGoogle Scholar
  16. 16.
    Zhien, M., Hallam, T.G.: Effects of parameter fluctuations on community survival. Math. Biosci. 86(1), 35–49 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and LettersIstanbul Technical UniversityIstanbulTurkey
  2. 2.Departamento de Matemática Aplicada and Research Unit “Modeling Nature” (MNat)Universidad de GranadaGranadaSpain

Personalised recommendations