SeMA Journal

, Volume 76, Issue 1, pp 109–122 | Cite as

Obliquely propagating wave solutions to conformable time fractional extended Zakharov–Kuzetsov equation via the generalized exp(− Φ(ξ))-expansion method

  • F. Ferdous
  • M. G. HafezEmail author
  • M. Y. Ali


This work investigates the obliquely propagating wave solutions of conformable time fractional (2 + 1)-dimensional extended Zakharov–Kuzetsov equation (eZKE) for understanding the behavior of physical issues in science and engineering, especially in magnetized plasmas. The generalized exp(− Φ(ξ))-expansion method along with the conformable fractional derivatives is employed to obtain various types of exact solutions to eZKE. The traveling wave solutions of eZKE are represented in the forms of hyperbolic, trigonometric and rational functions with physical as well as some additional free parameters. It is found that the obliqueness and physical parameters are significantly modified the wave dynamics taking the appropriate values of free and physical parameters.


Extended Zakharov–Kuzetsov equation Traveling wave solutions The generalized exp(−Φ(ξ))-expansion method Obliqueness 

Mathematics subject classification

35E99 35N05 35Q40 


  1. 1.
    Abdel-Gawad, H.I., Osman, M.: Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method. Indian J Pure Appl Math 45(1), 1 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdeljawad, T.: On conformable fractional calculus. J Comput Appl Math 279, 57 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ali, M.N., Osman, M.S., Husnine, S.M.: SeMA (2018). Google Scholar
  4. 4.
    Hafez, M.G.: Exact solutions to the (3 + 1)-dimensional coupled Klein–Gordon–Zakharov equation using exp -expansion method. Alexandria Eng. J. 55, 1635 (2016)CrossRefGoogle Scholar
  5. 5.
    Hafez, M.G., Lu, D.: Traveling wave solutions for space-time fractional nonlinear evolution equations. arXiv:1512.00715 [math.AP] (2015)
  6. 6.
    Hafez, M.G., Talukder, M.R., Ali, M.H.: Two-dimensional nonlinear propagation of ion acoustic waves through KPB and KP equations in weakly relativistic plasmas. Adv. Math. Phys. 2016 (ArticleID: 9352148), p. 12 (2016)Google Scholar
  7. 7.
    Hafez, M.G., Sakthivel, R., Talukder, M.R.: Some new electrostatic potential functions used to analyze the ion-acoustic waves in a thomas fermi plasma with degenerate electrons. Chin. J. Phys. 53, 120901 (2015)Google Scholar
  8. 8.
    Hafez, M.G., Roy, N.C., Talukder, M.R., Ali, M.H.: Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electronpositron-ion plasmas. Phys. Plasmas 23, 082904 (2016)CrossRefGoogle Scholar
  9. 9.
    Hafez, M.G., Talukder, M.R., Ali, M.H.: New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma. Waves Random Complex Med. 26, 68 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hafez, M.G., Roy, N.C., Talukder, M.R., Ali, M.H.: Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons. Astrophys. Space Sci. 361, 312 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Wave Random Complex 27, 628 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15, 970 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana –. J. Phys. 81, 3 (2013)Google Scholar
  14. 14.
    Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Osman, M.S.: Multiwave solutions of time-fractional (2 + 1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana 88, 67 (2017)CrossRefGoogle Scholar
  16. 16.
    Osman, M.S.: Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2 + 1)-dimensional Kadomtsev–Petviashvili equation with variable coefficients. Nonlinear Dyn. 87, 1209 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Osman, M.S.: On complex wave solutions governed by the 2D Ginzburg–Landau equation with variable coefficients. Opt. Int. J. Light Electron. Opt. 156, 169 (2018)CrossRefGoogle Scholar
  18. 18.
    Rafat, A., Rahman, M.M., Alam, M.S., Mamun, A.A.: Effects of nonextensivity on the electron-acoustic solitary structures in a magnetized electron–positron–ion plasma. Plasma Phys. Rep. 42, 792 (2016)CrossRefGoogle Scholar
  19. 19.
    Sagdeev, R.Z.: Reviews of Plasma Physics (New York Consultant Bureau) 4, 23 (1966)Google Scholar
  20. 20.
    Sahoo, S., Ray, S.S.: Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations. Comput. Math. Appl. 70, 158 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wazwaz, A.M.: Solitary waves solutions for extended forms of quantum Zakharov–Kuznetsov equations. Phys. Scr. 85, 025006 (2012)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zheng, B.: The (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013)Google Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2018

Authors and Affiliations

  1. 1.Department of MathematicsChittagong University of Engineering and TechnologyChittagongBangladesh

Personalised recommendations