SeMA Journal

, Volume 76, Issue 1, pp 65–77

# Improved variational iteration method for solving a class of nonlinear Fredholm integral equations

Article

## Abstract

In this paper, an efficient numerical method which is a combination of the variational iteration method and the spectral collocation method is developed for solving a class of nonlinear Fredholm integral equations (NFIEs). This method is easy to implement, requiring no tedious computational work and possesses the spectral accuracy. In addition, it does not require calculating Adomian’s polynomials and Lagrange’s multiplier values. Several numerical examples are included to demonstrate the validity and efficiency of the proposed method. The obtained results have been compared with the exact solutions so that the high accuracy of the results are clear.

## Keywords

Variational iteration method Spectral collocation method Nonlinear Fredholm integral equation

## Mathematics Subject Classification

45G10 45B05 65M70

## References

1. 1.
Abassy, T.A., El-Tawil, M.A., El Zoheiry, H.: Solving nonlinear partial differential equations using the modified variational iteration Padé technique. J. Comput. Appl. Math. 207(1), 73–91 (2007)
2. 2.
Abdou, M.A., El-Borai, M.M., El-Kojok, M.M.: Toeplitz matrix method and nonlinear integral equation of Hammerstein type. J. Comput. Appl. Math. 223(2), 765–776 (2009)
3. 3.
Atkinson, K.E.: The numerical solution of integral equations of the second kind, vol. 4. Cambridge University Press, Cambridge (1997)
4. 4.
Bazm, S.: Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations. J. Comput. Appl. Math. 275, 44–60 (2015)
5. 5.
Ben-Yu, G.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)
6. 6.
Boyd J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation (2001)Google Scholar
7. 7.
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)
8. 8.
Cattani, C., Kudreyko, A.: Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Appl. Math. Comput. 215, 4164–4171 (2010)
9. 9.
Trif, D.: Matrix based operatorial approach to differential and integral problems. In: MATLAB-A Ubiquitous Tool for the Practical Engineer. InTech (2011)Google Scholar
10. 10.
Dehghan, M.: Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53–59 (2008)Google Scholar
11. 11.
Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1988)
12. 12.
Ghorbani, A., Saberi-Nadjafi, J., Gachpazan, M.: A new spectral variational iteration method for solving nonlinear two-point boundary value problems. Spec. Issue Appl. Math. 13, 48–54 (2011)
13. 13.
Golbabai, A., Keramati, B.: Solution of non-linear Fredholm integral equations of the first kind using modified homotopy perturbation method. Chaos Solitons Fractals 39(5), 2316–2321 (2009)
14. 14.
Hashemizadeh, E., Rostami, M.: Numerical solution of Hammerstein integral equations of mixed type using the Sinc-collocation method. J. Comput. Appl. Math. 279, 31–39 (2015)
15. 15.
He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)
16. 16.
He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 34, 699–708 (1999)
17. 17.
He, J.H.: Variational principle for some nonlinear partial differential equations with variable coefficients. ChaChaos Solitons Fractals 19, 847–851 (2004)
18. 18.
He, J.H.: Variational iteration method-some resent results and new interetations. J. Comput. Appl. Math. 207(1), 3–17 (2007)
19. 19.
He, J.H., Wu, X.H.: Variational iteration method: new development and applications. Comput. Math. Appl. 54, 881–894 (2007)
20. 20.
Inokuti, M., Sekine, H., Mura, T.: General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Naseer, S. (ed.) Variational Method in the Mechanics of Solids, pp. 156–162. Pergamon Press, New York (1998)Google Scholar
21. 21.
Karoui, A.: On the existence of continuous solutions of nonlinear integral equations. Appl. Math. Lett. 18(3), 299–305 (2005)
22. 22.
Liu, Yucheng: Application of the Chebyshev polynomial in solving Fredholm integral equations. Math. Comput. Model. 50(3), 465–469 (2009)
23. 23.
Liu, Y., Liu, Y., Cen, Z.: Daubechies wavelet meshless method for 2-D elastic problems. Tsinghua Sci. Technol. 13(5), 605–608 (2008)
24. 24.
Maleknejad, K., Almasieh, H., Roodaki, M.: Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3293–3298 (2010)
25. 25.
Mandal, B.N., Bhattacharya, Subhra: Numerical solution of some classes of integral equations using Bernstein polynomials. Appl. Math. Comput. 190(2), 1707–1716 (2007)
26. 26.
Nabiei, M., Yousefi, S. A.: Newton type method for nonlinear Fredholm integral equations. arXiv preprint arXiv:1602.07446 (2016)
27. 27.
Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58, 2199–2208 (2009)
28. 28.
Ordokhani, Y., Moosavi, S.: Numerical solution of Volterra–Fredholm–Hammerstein integral equations by the tau method with the Bernstein multi-scaling functions. Int. J. Nonlinear Sci. 20(3), 179–192 (2015)
29. 29.
Rashidinia, J., Zarebnia, M.: New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185(1), 147–154 (2007)
30. 30.
Saberi-Nadjai, J., Heidari, M.: Solving nonlinear integral equations in the Urysohn form by Newton–Kantorovich—quadrature method. J. Comput. Math. Appl. 60, 2058–2065 (2010)
31. 31.
Tidke, H.L., Aage, C.T., Salunke, J.N.: Existence and uniqueness of continuous solution of mixed type integral equations in cone metric space. Kathmandu Univ. J. Sci. Eng. Technol. 7(1), 48–55 (2011)Google Scholar
32. 32.
Tricomi, F.G.: Integral Equations, vol. 5. Courier Corporation (1985)Google Scholar
33. 33.
Voitovich, N.N., Reshnyak, O.O.: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays. BSUAE J. Appl. Electromagn. 2(2), 43–52 (1999)Google Scholar