SeMA Journal

, Volume 76, Issue 1, pp 65–77 | Cite as

Improved variational iteration method for solving a class of nonlinear Fredholm integral equations

  • M. H. Daliri
  • J. Saberi-NadjafiEmail author


In this paper, an efficient numerical method which is a combination of the variational iteration method and the spectral collocation method is developed for solving a class of nonlinear Fredholm integral equations (NFIEs). This method is easy to implement, requiring no tedious computational work and possesses the spectral accuracy. In addition, it does not require calculating Adomian’s polynomials and Lagrange’s multiplier values. Several numerical examples are included to demonstrate the validity and efficiency of the proposed method. The obtained results have been compared with the exact solutions so that the high accuracy of the results are clear.


Variational iteration method Spectral collocation method Nonlinear Fredholm integral equation 

Mathematics Subject Classification

45G10 45B05 65M70 



The authors are very grateful to both reviewers for carefully reading the paper and for their comments and suggestions which helped to improve the paper.


  1. 1.
    Abassy, T.A., El-Tawil, M.A., El Zoheiry, H.: Solving nonlinear partial differential equations using the modified variational iteration Padé technique. J. Comput. Appl. Math. 207(1), 73–91 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abdou, M.A., El-Borai, M.M., El-Kojok, M.M.: Toeplitz matrix method and nonlinear integral equation of Hammerstein type. J. Comput. Appl. Math. 223(2), 765–776 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atkinson, K.E.: The numerical solution of integral equations of the second kind, vol. 4. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  4. 4.
    Bazm, S.: Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations. J. Comput. Appl. Math. 275, 44–60 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ben-Yu, G.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  6. 6.
    Boyd J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation (2001)Google Scholar
  7. 7.
    Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)zbMATHGoogle Scholar
  8. 8.
    Cattani, C., Kudreyko, A.: Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Appl. Math. Comput. 215, 4164–4171 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Trif, D.: Matrix based operatorial approach to differential and integral problems. In: MATLAB-A Ubiquitous Tool for the Practical Engineer. InTech (2011)Google Scholar
  10. 10.
    Dehghan, M.: Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53–59 (2008)Google Scholar
  11. 11.
    Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  12. 12.
    Ghorbani, A., Saberi-Nadjafi, J., Gachpazan, M.: A new spectral variational iteration method for solving nonlinear two-point boundary value problems. Spec. Issue Appl. Math. 13, 48–54 (2011)zbMATHGoogle Scholar
  13. 13.
    Golbabai, A., Keramati, B.: Solution of non-linear Fredholm integral equations of the first kind using modified homotopy perturbation method. Chaos Solitons Fractals 39(5), 2316–2321 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hashemizadeh, E., Rostami, M.: Numerical solution of Hammerstein integral equations of mixed type using the Sinc-collocation method. J. Comput. Appl. Math. 279, 31–39 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)MathSciNetzbMATHGoogle Scholar
  16. 16.
    He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 34, 699–708 (1999)zbMATHGoogle Scholar
  17. 17.
    He, J.H.: Variational principle for some nonlinear partial differential equations with variable coefficients. ChaChaos Solitons Fractals 19, 847–851 (2004)MathSciNetzbMATHGoogle Scholar
  18. 18.
    He, J.H.: Variational iteration method-some resent results and new interetations. J. Comput. Appl. Math. 207(1), 3–17 (2007)MathSciNetGoogle Scholar
  19. 19.
    He, J.H., Wu, X.H.: Variational iteration method: new development and applications. Comput. Math. Appl. 54, 881–894 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Inokuti, M., Sekine, H., Mura, T.: General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Naseer, S. (ed.) Variational Method in the Mechanics of Solids, pp. 156–162. Pergamon Press, New York (1998)Google Scholar
  21. 21.
    Karoui, A.: On the existence of continuous solutions of nonlinear integral equations. Appl. Math. Lett. 18(3), 299–305 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Liu, Yucheng: Application of the Chebyshev polynomial in solving Fredholm integral equations. Math. Comput. Model. 50(3), 465–469 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, Y., Liu, Y., Cen, Z.: Daubechies wavelet meshless method for 2-D elastic problems. Tsinghua Sci. Technol. 13(5), 605–608 (2008)MathSciNetGoogle Scholar
  24. 24.
    Maleknejad, K., Almasieh, H., Roodaki, M.: Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3293–3298 (2010)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Mandal, B.N., Bhattacharya, Subhra: Numerical solution of some classes of integral equations using Bernstein polynomials. Appl. Math. Comput. 190(2), 1707–1716 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nabiei, M., Yousefi, S. A.: Newton type method for nonlinear Fredholm integral equations. arXiv preprint arXiv:1602.07446 (2016)
  27. 27.
    Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58, 2199–2208 (2009)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ordokhani, Y., Moosavi, S.: Numerical solution of Volterra–Fredholm–Hammerstein integral equations by the tau method with the Bernstein multi-scaling functions. Int. J. Nonlinear Sci. 20(3), 179–192 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Rashidinia, J., Zarebnia, M.: New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185(1), 147–154 (2007)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Saberi-Nadjai, J., Heidari, M.: Solving nonlinear integral equations in the Urysohn form by Newton–Kantorovich—quadrature method. J. Comput. Math. Appl. 60, 2058–2065 (2010)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tidke, H.L., Aage, C.T., Salunke, J.N.: Existence and uniqueness of continuous solution of mixed type integral equations in cone metric space. Kathmandu Univ. J. Sci. Eng. Technol. 7(1), 48–55 (2011)Google Scholar
  32. 32.
    Tricomi, F.G.: Integral Equations, vol. 5. Courier Corporation (1985)Google Scholar
  33. 33.
    Voitovich, N.N., Reshnyak, O.O.: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays. BSUAE J. Appl. Electromagn. 2(2), 43–52 (1999)Google Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics, School of Mathematical SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations