SeMA Journal

, Volume 61, Issue 1, pp 1–17 | Cite as

Control of coupled parabolic systems and Diophantine approximations

  • Florian Luca
  • Luz de TeresaEmail author


In this paper we consider the boundary null controllability problem of two coupled one dimensional parabolic equations. We show that in the case in which each equation have different diffusion constant, lets say \(\nu \) and 1, the null controllability result depends on the nature of the diffusion constant \(\nu \). Using rational approximations of the number \(\nu \), we show that null controllability is possible or not. In this sense the result is a number theoretical result.


Null controllability Observability inequality Rational approximations 

Mathematics Subject Classification (2000)

93C20 11A55 



The authors want to thank the anonymous referee for his/her suggestions and corrections that greatly improved the paper.


  1. Ammar-Khodja, F., Benabdallah, A., Dupaix, C., González-Burgos, M.: A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ. 9, 267–291 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Ammar-Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1, 267–306 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Ammar-Khodja, F., Benabdallah, A., González-Burgos M., de Teresa, L.: Minimal time for the null controllability of parabolic systems: the effect of the condensation number of complex sequences (preprint)Google Scholar
  4. Bothe, D., Hilhorst, D.: A reaction-diffusion system with fast reversible reaction. J. Math. Anal. Appl. 286, 125–135 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Dolecki, S.: Observability for the one-dimensional heat equation. Studia Math. 48, 291–305 (1973)MathSciNetGoogle Scholar
  7. Erdi, P., Tóth, J.: “Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models”, Nonlinear Science: Theory and Applications. Princeton University Press, Princeton (1989)Google Scholar
  8. Fattorini, H.O., Russell, D.L.: Exact controllability for linear Parabolic Equations in one space dimension. Arch. Rational Mech. Anal. 43, 272–292 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Fursikov, A., Imanuvilov, O.Y.: Exact controllability of the Navier-Stokes and Boussinesq equations, (Russian) Uspekhi Mat. Nauk, 54: 93–146; translation in Russian Math. Surveys 54(1999), 565–618 (1999)Google Scholar
  10. Fernández-Cara, E., González-Burgos, M., de Teresa, L.: Boundary controllability of parabolic coupled equations. J. Funct. Anal. 259, 1720–1758 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. González-Burgos, M., de Teresa, L.: Controllability results for cascade systems of \(m\) coupled parabolic PDEs by one control force. Port. Math. 67, 91–113 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Khintchine, A.Y.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92, 115–125 (1924)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20, 335–356 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer, New York (1972)Google Scholar
  15. Luxemburg, W.A.J., Korevaar, J.: Entire functions and Müntz-Szász type approximation. Trans. Am. Math. Soc. 157, 23–37 (1971)MathSciNetzbMATHGoogle Scholar
  16. Nagai, T., Senba, T., Susuki, T.: Chemotactic collapse in parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000)MathSciNetzbMATHGoogle Scholar
  17. Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1–20 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Schwartz, L.: Étude des sommes d’exponentielles, 2ième éd., Publications de l’Institut de Mathématique de l’Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris (1959)Google Scholar
  19. Tucsnak, M., Weiss, G.: Observation and control for Operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2009)Google Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2013

Authors and Affiliations

  1. 1.Fundación Marcos MoshinskyInstituto de Ciencias Nucleares UNAMMexico, DFMexico
  2. 2.Instituto de MatemáticasUniversidad Nacional Autónoma de México, Circuito Exterior, C.U.Mexico, DFMexico

Personalised recommendations