On CM-types of Galois CM-fields without proper CM-subfields

  • Masanari KidaEmail author


We show that all CM-types of Galois CM-fields without proper CM-subfields are nondegenerate. As a consequence, the Hodge conjecture is true for abelian varieties with complex multiplication by such CM-fields.


Complex multiplication CM-type Hodge conjecture CM-field 


Nous montrons que tous les corps galoisiens et CM sans sous-corps propre CM possèdent un type CM non-dégénéré. En conséquence, la conjecture de Hodge est vraie pour les variétés abéliennes à multiplication complexe par de tels corps.

Mathematics Subject Classification

11G15 14K22 



This paper grew out of the lectures by Hiromichi Yanai on the theory of complex multiplication at Tokyo University of Science from September 6th to 9th, 2017. The author would like to express sincere gratitude to Professor Yanai for his excellent lectures.


  1. 1.
    Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York (1982)Google Scholar
  2. 2.
    Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, vol. XI. Interscience Publishers, a division of Wiley, New York (1962)zbMATHGoogle Scholar
  3. 3.
    Dodson, B.: Solvable and nonsolvable CM-fields. Am. J. Math. 108(1), 75–93 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Isaacs, I.M.: Character Theory of Finite Groups. Pure and Applied Mathematics, vol. 69. Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1976)zbMATHGoogle Scholar
  5. 5.
    Jensen, C.U., Ledet, A., Yui, N.: Generic Polynomials. Mathematical Sciences Research Institute Publications, vol. 45. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  6. 6.
    Kubota, T.: On the field extension by complex multiplication. Trans. Am. Math. Soc. 118, 113–122 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mai, L.: Lower bounds for the ranks of CM types. J. Number Theory 32(2), 192–202 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ribet, K.A.: Division fields of abelian varieties with complex multiplication. Mém. Soc. Math. France (N.S.) (1980/81) 2, 75–94 (Abelian functions and transcendental numbers (Colloq., Étole Polytech., Palaiseau, 1979))Google Scholar
  9. 9.
    Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton Mathematical Series, vol. 46. Princeton University Press, Princeton (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Fondation Carl-Herz and Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science Division ITokyo University of ScienceTokyoJapan

Personalised recommendations