Uniqueness of Meromorphic Functions Concerning Their Differences and Solutions of Difference PainlevÉ Equations

Article
  • 27 Downloads

Abstract

This paper is devoted to studying some shared value properties for finite-order meromorphic solutions of the difference Painlevé IV equation. We also consider sharing value problems for the derivative of a meromorphic function f(z) with its shift \(f(z+c)\) and difference \(\Delta f\).

Keywords

Meromorphic functions Difference Painlevé equation Value sharing 

Mathematics Subject Classification

Primary 39A05 Secondary 30D35 

Notes

Acknowledgements

The authors would like to thank the referee for his/her helpful suggestions and comments.

References

  1. 1.
    Charak, K.S., Korhonen, R.J., Kumar, G.: A note on partial sharing of values of meromorphic functions with their shifts. J. Math. Anal. Appl. 435, 1241–1248 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chen, Z.X., Yi, H.X.: On sharing values of meromorphic functions and their differences. Results Math. 63, 557–565 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of \(f(z+\eta )\) and difference equations in the complex plane. Ramanujan J. 16, 105–129 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bergweiler, W., Langley, J.K.: Zeros of differences of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142, 133–147 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gundersen, G.G.: Meromorphic functions that share three values IM and a fourth value CM. Complex Var. Elliptic Equ. 20, 99–106 (1992)MathSciNetMATHGoogle Scholar
  6. 6.
    Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. 31, 463–478 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477–487 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Halburd, R.G., Korhonen, R.J.: Finite order solutions and the discrete Painlevé equations. Proc. Lond. Math. Soc. 94, 443–474 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., Zhang, J.L.: Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity. J. Math. Anal. Appl. 355, 352–363 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J.: Uniqueness of meromorphic functions sharing values with their shifts. Complex Var. Elliptic Equ. 56, 81–92 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lin, W.C., Tohge, K.: On shared-value properties of Painlevé transcendents. Comput. Methods Funct. Theory 7, 477–499 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lü, F., Han, Q., Lü, W.R.: On unicity of meromorphic solutions to difference equations of Malmquist type. Bull. Aust. Math. Soc. 93, 92–98 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lü, F., Lü, W.R.: Meromorphic functions sharing three values with their difference operators. Comput. Methods Funct. Theory 17, 395–403 (2017)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Qi, X.G.: Value distribution and uniqueness of difference polynomials and entire solutions of difference equations. Ann. Polon. Math. 102, 129–142 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Qi, X.G., Dou, J.: On shared value properties of difference Painlevé equations, submittedGoogle Scholar
  16. 16.
    Ronkainen, O.: Meromorphic solutions of difference Painlevé equations. Doctoral Dissertation, Helsinki (2010)Google Scholar
  17. 17.
    Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers, Dordrecht (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Yang, L.Z., Zhang, J.L.: Non-existence of meromorphic solution of a Fermat type functional equation. Aequ. Math. 76, 140–150 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zhang, J.L.: Meromorphic solutions of Painlevé IV difference equations. Adv. Differ. Equ. 260, (2014)Google Scholar
  20. 20.
    Zhang, J., Liao, L.W.: Entire functions sharing some values with their difference operators. Sci China Math. 57, 2143–2152 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of JinanJinanPeople’s Republic of China
  2. 2.School of MathematicsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations