Skip to main content
Log in

Research Questions on Meromorphic Functions and Complex Differential Equations

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Twenty-eight research questions on meromorphic functions and complex differential equations are listed and discussed. The main purpose of this paper is to make this collection of problems available to everyone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, S.: On the explicit determination of certain solutions of periodic differential equations. Complex Var. 23, 101–121 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, S., Laine, I.: On the oscillation theory of \(f^{\prime \prime } + Af = 0\) where \(A\) is entire. Trans. Am. Math. Soc. 273, 351–363 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Bank, S., Laine, I.: On the zeros of meromorphic solutions of second-order linear differential equations. Comment. Math. Helv. 58, 656–677 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bank, S., Laine, I.: Representations of solutions of periodic second order linear differential equations. J. Reine Angew. Math. 344, 1–21 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Bank, S., Laine, I., Langley, J.K.: On the frequency of zeros of solutions of second order linear differential equations. Results Math. 10, 8–24 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bank, S., Langley, J.K.: On the oscillation of solutions of certain linear differential equations in the complex domain. Proc. Edinb. Math. Soc. 30, 455–469 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergweiler, W., Eremenko, A.: On the Bank–Laine conjecture. J. Eur. Math. Soc. (2016, to appear)

  8. Brannan, D.A., Hayman, W.K.: Research problems in complex analysis. Bull. Lond. Math. Soc. 21, 1–35 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brosch, G.: Eindeutigkeitssätze für meromorphe Funktionen. Technical University of Aachen, Thesis (1989)

  10. Chiang, Y.M.: Oscillation results on \(y^{\prime \prime } + Ay = 0\) in the complex domain with transcendental entire coeffients which have extremal deficiencies. Proc. Edinb. Math. Soc. 38, 13–34 (1995)

    Article  MATH  Google Scholar 

  11. Chiang, Y.M., Ismail, M.E.H.: On value distribution theory of second order periodic ODES, special functions and orthogonal polynomials. Can. J. Math. 58, 726–767 (2006) [Erratum: 62, 261 (2010)]

  12. Eremenko, A.: Rational solutions of first-order differential equations. Ann. Acad. Sci. Fenn. Math. 23, 181–190 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Eremenko, A., Gabrielov, A., Shapiro, B.: Zeros of eigenfunctions of some anharmonic oscillators. Ann. Inst. Fourier Grenoble 58, 603–624 (2008)

  14. Eremenko, A., Merenkov, S.: Nevanlinna functions with real zeros. Ill. J. Math. 49, 1093–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Frei, M.: Über die subnormalen Lösungen der Differentialgleichung \(w^{\prime \prime } + e^{-z}w^{\prime } + (konst.)w = 0\). Comment. Math. Helv. 36, 1–8 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fujimoto, H.: On meromorphic maps into the complex projective space. J. Math. Soc. Japan 26, 272–288 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Green, M.: Some Picard theorems for holomorphic maps to algebraic varieties. Am. J. Math. 97, 43–75 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gundersen, G.G.: Meromorphic functions that share three or four values. J. Lond. Math. Soc. 20, 457–466 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gundersen, G.G.: Meromorphic functions that share four values. Trans. Am. Math. Soc. 277, 545–567 (1983) [Correction: 304, 847–850 (1987)]

  20. Gundersen, G.G.: On the real zeros of solutions of \(f^{\prime \prime } + A(z)f = 0\) where \(A(z)\) is entire. Ann. Acad. Sci. Fenn. Math. 11, 275–294 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gundersen, G.G.: Finite order solutions of second order linear differential equations. Trans. Am. Math. Soc. 305, 415–429 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gundersen, G.G.: Meromorphic solutions of \(f^6 + g^6 + h^6 = 1\). Analysis 18, 285–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gundersen, G.G.: Solutions of \(f^{\prime \prime } + P(z)f = 0\) that have almost all real zeros. Ann. Acad. Sci. Fenn. Math. 26, 483–488 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Gundersen, G.G.: Meromorphic solutions of \(f^5 + g^5 + h^5 = 1\). Complex Var. 43, 293–298 (2001)

    Article  MATH  Google Scholar 

  25. Gundersen, G.G.: Complex functional equations. In: Complex Differential and Functional Equations (Mekrijärvi, 2000), Univ. Joensuu Dept. Math. Rep. Ser., vol. 5, pp. 21–50 (2003)

  26. Gundersen, G.G.: Meromorphic solutions of a differential equation with polynomial coefficients. Comput. Methods Funct. Theory 8, 1–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gundersen, G.G.: Meromorphic functions that share five pairs of values. Complex Var. Elliptic Equ. 56, 93–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gundersen, G.G., Hayman, W.K.: The strength of Cartan’s version of Nevanlinna theory. Bull. Lond. Math. Soc. 36, 433–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gundersen, G.G., Laine, I.: On the meromorphic solutions of some algebraic differential equations. J. Math. Anal. Appl. 111, 281–300 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gundersen, G.G., Tohge, K.: Entire and meromorphic solutions of \(f^5 + g^5 + h^5 = 1\). In: Symposium on Complex Differential and Functional Equations. Univ. Joensuu Dept. Math. Rep. Ser., vol. 6, pp. 57–67 (2004)

  31. Havin, V.P., Hrus̆c̆ëv, S.V., Nikol’skii, N.K. (eds.): Linear and Complex Analysis Problem Book, Lecture Notes in Mathematics, vol. 1043. Springer, Berlin (1984)

  32. Havin, V.P., Nikol’skii, N.K. (eds.): Linear and Complex Analysis Problem Book 3, Part II, Lecture Notes in Mathematics, vol. 1574. Springer, Berlin (1994)

  33. Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  34. Hayman, W.K.: Waring’s Problem für analytische Funktionen. Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1984, 1–13 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Heittokangas, J., Laine, I., Tohge, K., Wen, Z.T.: Completely regular growth solutions of second order complex linear differential equations. Ann. Acad. Sci. Fenn. Math. 40, 985–1003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hellerstein, S., Rossi, J.: Zeros of meromorphic solutions of second order linear differential equations. Math. Z. 192, 603–612 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu, P.C., Li, P., Yang, C.C.: Unicity of Meromorphic Mappings. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  38. Ishizaki, K.: A note on the functional equation \(f^n + g^n + h^n = 1\) and some complex differential equations. Comput. Methods Funct. Theory 2, 67–85 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin (1993)

    Book  MATH  Google Scholar 

  40. Laine, I.: Complex Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations, vol. IV, pp. 269–363. Elsevier, Amsterdam (2008)

  41. Lang, S.: Introduction to Complex Hyperbolic Spaces. Springer, New York (1987)

    Book  MATH  Google Scholar 

  42. Langley, J.K.: On complex oscillation and a problem of Ozawa. Kodai Math. J. 9, 430–439 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Langley, J.K.: Composite Bank–Laine functions and a question of Rubel. Trans. Am. Math. Soc. 354, 1177–1191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lehmer, D.H.: On the diophantine equation \(x^3 + y^3 + z^3 = 1\). J. Lond. Math. Soc. 31, 275–280 (1956)

    Article  MATH  Google Scholar 

  45. Long, J.: Applications of Value Distribution Theory in the Theory of Complex Differential Equations, Publications Univ. Eastern Finland, Diss. Forestry and Natural Sci., vol. 176 (2015)

  46. Malmquist, J.: Sur les fonctions á un nombre fini des branches définies par les équations différentielles du premier ordre. Acta Math. 36, 297–343 (1913)

    Article  MathSciNet  Google Scholar 

  47. Miles, J., Rossi, J.: Linear combinations of logarithmic derivatives of entire functions with applications to differential equations. Pac. J. Math. 174, 195–214 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Molluzzo, J.: Monotonicity of quadrature formulas and polynomial representation, Doctoral thesis, Yeshiva University (1972)

  49. Mues, E.: Meromorphic functions sharing four values. Complex Var. 12, 169–179 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mues, E.: Bemerkungen zum Vier-Punkte-Satz. In: Complex Methods on Partial Differential Equations, Proc. Int. Symp. Complex Analysis, Graz/Austria 1988, Math. Research, vol. 53, pp. 109–117 (1989)

  51. Mues, E.: Shared value problems for meromorphic functions. In: Value Distribution Theory and Complex Differential Equations (Joensuu 1994), Univ. Joensuu Publications in Sci., vol. 35, pp. 17–43 (1995)

  52. Nevanlinna, R.: Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48, 367–391 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  53. Newman, D., Slater, M.: Waring’s problem for the ring of polynomials. J. Number Theory 11, 477–487 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  54. Petrenko, V.P.: Entire Curves. Kharkov (1984, Russian)

  55. Reinders, M.: A new example of meromorphic functions sharing four values and a uniqueness theorem. Complex Variables 18, 213–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Reinders, M.: A new characterization of Gundersen’s example of two meromorphic functions sharing four values. Results Math. 24, 174–179 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  57. Reznick, B.: Patterns of dependence among powers of polynomials. In: Algorithmic and Quantitative Real Algebraic Geometry, DIMACS: Ser. Discrete Math. and Theoretical Computer Sci., vol. 60. Amer. Math. Soc., pp. 101–121 (2003)

  58. Rieppo, J.: Differential fields and complex differential equations. Ann. Acad. Sci. Fenn. Math. Diss. 118 (1998)

  59. Ronkin, L.I.: Functions of Completely Regular Growth, Math. Appl. (Soviet Ser.), vol. 81. Kluwer Academic Publishers, Dordrecht (1992)

  60. Rubel, L.: Unbounded analytic functions and their derivatives on plane domains. Bull. Inst. Math. Acad. Sin. 12, 363–377 (1984)

    MathSciNet  MATH  Google Scholar 

  61. Shin, K.C.: New polynomials \(P\) for which \(f^{\prime \prime } + P(z)f = 0\) has a solution with almost all real zeros. Ann. Acad. Sci. Fenn. Math. 27, 491–498 (2002)

    MathSciNet  MATH  Google Scholar 

  62. Steinmetz, N.: A uniqueness theorem for three meromorphic functions. Ann. Acad. Sci. Fenn. Math. 13, 93–110 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  63. Steinmetz, N.: Reminiscence of an open problem: remarks on Nevanlinna’s four-value theorem. Southeast Asian Bull. Math. 36, 399–417 (2012) [Corrigendum (2014)]

  64. Steinmetz, N.: Remark on meromorphic functions that share five pairs. Analysis (2016, to appear)

  65. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. Toda, N.: On the functional equation \(\sum _{i=0}^{p} a_i{f_i}^{n_i} = 1\). Tôhoku Math. J. 23, 289–299 (1971)

    Article  MathSciNet  Google Scholar 

  67. Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  69. Yang, L.: Value Distribution Theory, revised Edition of the original Chinese Edition. Springer, Berlin (1993)

    Google Scholar 

  70. Yi, H.X., Li, X.M.: Meromorphic functions sharing four values. Proc. Japan Acad. Ser. A 83, 123–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary G. Gundersen.

Additional information

Communicated by Ilpo Laine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundersen, G.G. Research Questions on Meromorphic Functions and Complex Differential Equations. Comput. Methods Funct. Theory 17, 195–209 (2017). https://doi.org/10.1007/s40315-016-0178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-016-0178-7

Keywords

Mathematics Subject Classification

Navigation