Computational Methods and Function Theory

, Volume 14, Issue 2–3, pp 209–218 | Cite as

The Julia Set and the Fast Escaping Set of a Quasiregular Mapping

  • Walter Bergweiler
  • Alastair Fletcher
  • Daniel A. Nicks


It is shown that for quasiregular maps of positive lower order, the Julia set coincides with the boundary of the fast escaping set.


Quasiregular mapping Iteration Dynamics Julia set  Fast escaping set 

Mathematics Subject Classification (2000)

Primary 37F10 Secondary 30C65 30D05 


  1. 1.
    Bergweiler, W.: Karpińska’s paradox in dimension 3. Duke Math. J. 154(3), 599–630 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bergweiler, W.: Iteration of quasiregular mappings. Comput. Methods Funct. Theory 10(2), 455–481 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bergweiler, W.: Fatou-Julia theory for non-uniformly quasiregular maps. Ergodic Theory Dynam. Syst. 33(1), 1–23 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bergweiler, W., Drasin, D., Fletcher, A.: The fast escaping set for quasiregular mappings, preprint, arXiv:1308.2860.
  5. 5.
    Bergweiler, W., Eremenko, A.: Dynamics of a higher dimensional analog of the trigonometric functions. Ann. Acad. Sci. Fenn. Math. 36(1), 165–175 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bergweiler, W., Fletcher, A., Langley, J.K., Meyer, J.: The escaping set of a quasiregular mapping. Proc. Amer. Math. Soc. 137(2), 641–651 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bergweiler, W., Hinkkanen, A.: On semiconjugation of entire functions. Math. Proc. Cambridge Philos. Soc. 126(3), 565–574 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bergweiler, W., Nicks, D.A.: Foundations for an iteration theory of entire quasiregular maps, to appear in, Israel. J. Math. arXiv:1210.3972.
  9. 9.
    Drasin, D., Sastry, S.: Periodic quasiregular mappings of finite order. Rev. Mat. Iberoamericana 19(3), 755–766 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Eremenko, A.E.: On the Iteration of Entire Functions, Dynamical Systems and Ergodic Theory, Banach Center Publications 23, pp. 339–345. Polish Scientific Publishers, Warsaw (1989)Google Scholar
  11. 11.
    Fletcher, A., Nicks, D.A.: Quasiregular dynamics on the \(n\)-sphere. Ergodic Theory Dyn. Syst. 31, 23–31 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fletcher, A., Nicks, D.A.: Chaotic dynamics of a quasiregular sine mapping. J. Differ. Equ. Appl. 19(8), 1353–1360 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fletcher, A., Nicks, D.A.: Superattracting fixed points of quasiregular mappings, preprint.Google Scholar
  14. 14.
    Gehring, F.W.: Extremal length definitions for the conformal capacity of rings in space. Michigan Math. J. 9, 137–150 (1962)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Iwaniec, T., Martin, G.J.: Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs. Oxford University Press, New York (2001)Google Scholar
  16. 16.
    Nicks, D.A.: Wandering domains in quasiregular dynamics. Proc. Amer. Math. Soc. 141(4), 1385–1392 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rickman, S.: Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 26. Springer-Verlag, Berlin (1993)Google Scholar
  18. 18.
    Rippon, P., Stallard, G.: On questions of Fatou and Eremenko. Proc. Amer. Math. Soc. 133(4), 1119–1126 (2005)Google Scholar
  19. 19.
    Rippon, P., Stallard, G.: Fast escaping points of entire functions. Proc. London Math. Soc. 105(4), 787–820 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sun, D., Yang, L.: Quasirational dynamical systems (Chinese). Chin. Ann. Math. Ser. A 20(6), 673–684 (1999)MathSciNetMATHGoogle Scholar
  21. 21.
    Sun, D., Yang, L.: Quasirational dynamic system. Chin. Sci. Bull. 45(14), 1277–1279 (2000)CrossRefGoogle Scholar
  22. 22.
    Sun, D., Yang, L.: Iteration of quasi-rational mapping. Progr. Natur. Sci. (English Ed.) 11(1), 16–25 (2001)MathSciNetGoogle Scholar
  23. 23.
    Vuorinen, M.: Some inequalities for the moduli of curve families. Michigan Math. J. 30(3), 369–380 (1983)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics 1319. Springer-Verlag, Berlin (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Walter Bergweiler
    • 1
  • Alastair Fletcher
    • 2
  • Daniel A. Nicks
    • 3
  1. 1.Mathematisches SeminarChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Department of Mathematical SciencesNorthern Illinois UniversityDeKalbUSA
  3. 3.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations