Advertisement

Solvability analysis of a special type fractional differential system

  • Kateryna MarynetsEmail author
Article
  • 11 Downloads

Abstract

Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.

Keywords

Fractional differential equations Anti-periodic boundary conditions Approximation of solutions Parametrization technique 

Mathematics Subject Classification

Primary 34A08 34K07 Secondary 34K28 

Notes

References

  1. Batelli F, Fečkan M (2008) Handbook of Differential Equations: ordinary differential equations Vol. IV., 1. Ed., Elsevier/North-Holland. Amsterdam, 2463480Google Scholar
  2. Farkas M (1994) Periodic motions, Applied mathematical sciences. Springer, LondonCrossRefGoogle Scholar
  3. Fečkan M, Marynets K (2017) Approximation approach to periodic BVP for fractional differential systems. Eur Phys J Spec Topics 226:3681–3692.  https://doi.org/10.1140/epjst/e2018-00017-9 CrossRefzbMATHGoogle Scholar
  4. Fečkan M, Marynets K (2018) Approximation approach to periodic BVP for mixed fractional differential systems. J Comput Appl Math 339:208–217.  https://doi.org/10.1016/j.cam.2017.10.028 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Fečkan M, Marynets K, JinRong Wang (2019) Periodic boundary value problems for higher order fractional differential systems. Math Methods Appl Sci 42:3616–3632.  https://doi.org/10.1002/mma.5601 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Kaslik E, Sivasundara S (2012) Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal Real World Appl 13:1489–1497.  https://doi.org/10.1016/j.nonrwa.2011.11.013 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Marynets K (2016) On construction of the approximate solution of the special type integral boundary-value problem. Electron J Qual Theory Differ Equ 6:1–14.  https://doi.org/10.14232/ejqtde.2016.1.6 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ronto MI, Marynets KV (2012) On the parametrization of boundary-value problems with two-point nonlinear boundary conditions. Nonlinear Oscil 14:379–413.  https://doi.org/10.1007/s11072-012-0165-5 CrossRefzbMATHGoogle Scholar
  9. Ronto M, Marynets KV, Varha JV (2015) Further results on the investigation of solutions of integral boundary value problems. Tatra Mt Math Publ 63:247–267.  https://doi.org/10.1515/tmmp-2015-0036 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Wang J, Zhou Y, Fečkan M (2011) Alternative results and robustness for fractional evolution equations with periodic boundary conditions. Electron J Qual Theory Differ Equ 97:1–15.  https://doi.org/10.14232/ejqtde.2011.1.97 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Wang J, Fečkan M, Zhou Y (2016) A survey on impulsive fractional differential equations. Fract Calc Appl Anal 19:806–831.  https://doi.org/10.1515/fca-2016-0044
  12. Zhou Y (2014) Basic theory of fractional differential equations. World Scientifc. Singapore. 10(1142/9069):3287248Google Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Uzhhorod National UniversityUzhhorodUkraine

Personalised recommendations