Advertisement

Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate

  • Onur SaldırEmail author
  • Mehmet Giyas Sakar
  • Fevzi Erdogan
Article
  • 193 Downloads

Abstract

We present a new approach depending on reproducing kernel method (RKM) for time-fractional Kawahara equation with variable coefficient. This approach consists of obtaining an orthonormal basis function on specific Hilbert spaces. In this regard, some special Hilbert spaces are defined. Kernel functions of these special spaces are given and basis functions are obtained. The approximate solution is attained as serial form. Convergence analysis, error estimation and stability analysis are presented after obtaining the approximate solution. To show the power and effect of the method, two examples are solved and the results are given as table and graphics. The results demonstrate that the presented method is very efficient and convenient for Kawahara equation with fractional order.

Keywords

Reproducing kernel method Kawahara equation Caputo derivative Convergence 

Mathematics Subject Classification

65M12 35R11 46E22 

Notes

References

  1. Abu Arqub O, Al-Smadi M (2018) Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions. Numer Methods Partial Differ Equ 34:1577–1597zbMATHCrossRefGoogle Scholar
  2. Abu Arqub O, Maayah B (2018) Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos, Solitons Fractals 117:117–24MathSciNetCrossRefGoogle Scholar
  3. Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differentialequations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948MathSciNetzbMATHGoogle Scholar
  4. Abu Arqub O, Odibat Z, Al-Smadi M (2018) Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn 94:1819–1834zbMATHCrossRefGoogle Scholar
  5. Akram G, Rehman H (2013) Numerical solution of eighth order boundary value problems in reproducing Kernel space. Numer Algorithms 62:527–540MathSciNetzbMATHCrossRefGoogle Scholar
  6. Al-Smadi M, Abu Arqub O (2019) Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl Math Comput 342:280–294MathSciNetGoogle Scholar
  7. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404MathSciNetzbMATHCrossRefGoogle Scholar
  8. Arqub O (2017) Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput Math Appl 73(6):1243–1261MathSciNetzbMATHCrossRefGoogle Scholar
  9. Arqub O (2018) Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer Methods Partial Differ Equ 2018(34):1759–1780MathSciNetzbMATHCrossRefGoogle Scholar
  10. Arqub O, Al-Smadi M (2018) Atangana-Baleanu fractional approach to the solutions of Bagley–Torvik and Painlev\(\acute{e}\) equations in Hilbert space. Chaos, Solitons Fractals 117:161–167CrossRefMathSciNetGoogle Scholar
  11. Bagherzadeh AS (2017) B-Spline collocation method for numerical solution of nonlinear Kawahara and modified Kawahara equations. TWMS J Appl Eng Math 7(2):188–199MathSciNetzbMATHGoogle Scholar
  12. Beyrami H, Lotfi T, Mahdiani K (2017) Stability and error analysis of the reproducing kernel Hilbert space method for the solution of weakly singular Volterra integral equation on graded mesh. Appl Numer Math 120(2017):197–214MathSciNetzbMATHCrossRefGoogle Scholar
  13. Bibi N, Tirmizi SIA, Haq S (2011) Meshless method of lines for numerical solution of Kawahara type equations. Appl Math 2011(2):608–618MathSciNetCrossRefGoogle Scholar
  14. Cui MG, Lin YZ (2009) Nonlinear numercal analysis in the reproducing kernel space. Nova Science Publisher, New YorkGoogle Scholar
  15. Cui S, Deng D, Tao S (2006) Global existence of solutions for the Cauchy problem of the Kawahara equation with \(L^2\) initial data. Acta Math Sin (Engl Ser) 22(5):1457–1466CrossRefMathSciNetzbMATHGoogle Scholar
  16. Dereli Y, Dag I (2012) Numerical solutions of the Kawahara type equations using radial basis functions. Numer Methods Partial Differ Equ 28(2):542–553MathSciNetzbMATHCrossRefGoogle Scholar
  17. Diethelm K (2010) The analysis of fractional differential equations. Lecture notes in mathematics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  18. Faminskii AV, Opritova MA (2015) On the initial-boundary-value problem in a half-strip for a generalized Kawahara equation. J Math Sci 206(1):17–38MathSciNetzbMATHCrossRefGoogle Scholar
  19. Haragus M, Lombardi E, Scheel A (2006) Spectral stability of wave trains in the Kawahara equation. J Math Fluid Mech 8(4):482–509MathSciNetzbMATHCrossRefGoogle Scholar
  20. Jiang W, Lin Y (2010) Approximate solution of the fractional advection-dispersion equation. Comput Phys Commun 181:557–561MathSciNetzbMATHCrossRefGoogle Scholar
  21. Jiang W, Lin Y (2011) Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun Nonlinear Sci Numer Simul 16:3639–3645MathSciNetzbMATHCrossRefGoogle Scholar
  22. Kabakouala A, Molinet L (2018) On the stability of the solitary waves to the (generalized) Kawahara equation. J Math Anal Appl 457(1):478–497MathSciNetzbMATHCrossRefGoogle Scholar
  23. Kawahara T (1972) Oscillatory solitary waves in dispersive media. J Phys Soc Japan 33(1):260–264CrossRefGoogle Scholar
  24. Lakshmikantham V, Leela S, Vasundhara Devi J (2009) Theory of fractional dynamic systems. Cambridge Scientific Publishers, CambridgezbMATHGoogle Scholar
  25. Lin Y, Zhou Y (2004) Solving the reaction-diffusion equations with nonlocal boundary conditions based on reproducing kernel space. Numer Methods Partial Differ Equ 25(6):1468–1481MathSciNetzbMATHCrossRefGoogle Scholar
  26. Lu J (2008) Analytical approach to Kawahara equation using variational iteration method and homotopy perturbation method. Topol Methods Nonlinear Anal 31:287–293MathSciNetzbMATHGoogle Scholar
  27. Mohammadi M, Mokhtari R (2014) A reproducing kernel method for solving a class of nonlinear systems of PDEs. Math Model Anal 19(2):180–198MathSciNetCrossRefGoogle Scholar
  28. Mohammadi M, Mokhtari R, Panahipour H (2013) A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers equations. Eng Anal Bound Elem 37:1642–1652MathSciNetzbMATHCrossRefGoogle Scholar
  29. Mohammadi M, Zafarghandi FS, Babolian E, Jvadi S (2018) A local reproducing kernel method accompanied by some different edge improvement techniques: application to the Burgers’ equation. Iran J Sci Technol Trans Sci 42:857–871MathSciNetzbMATHCrossRefGoogle Scholar
  30. Osman MS (2017) Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana J Phys 88(67):1–9Google Scholar
  31. Osman MS, Korkmaz A, Rezazadeh H, Mirzazadeh M, Eslami M, Zhou Q (2018) The unified method for conformable time fractional Schrödinger equation with perturbation terms. Chin J Phys 56(5):2206–2500CrossRefGoogle Scholar
  32. Podlubny I (1999) Fractional differential equations. Academic Press, New YorkzbMATHGoogle Scholar
  33. Polat N, Kaya D, Tutalar HI (2006) A analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method. Appl Math Comput 181:193–199MathSciNetzbMATHGoogle Scholar
  34. Rezazadeh H, Osman MS, Eslami M, Ekici M, Sonmezoglu A, Asma M, Othman WAM, Wong BR, Mirzazadeh M, Zhou Q, Biswas A, Belic M (2018) Mitigating internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164(2018):84–92CrossRefGoogle Scholar
  35. Rezazadeh H, Osman MS, Eslami M, Mirzazadeh M, Zhou Q, Badri SA, Korkmaz A (2019) Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations. Nonlinear Eng 8(2019):227–230Google Scholar
  36. Safavi M, Khajehnasiri AA (2016) Solutions of the modified Kawahara equation with time-and space-fractional derivatives. J Mod Methods Numer Math 7(1):10–18MathSciNetzbMATHCrossRefGoogle Scholar
  37. Saitoh S, Sawano Y (2016) Theory of reproducing kernels and applications. Developments in mathematics. Springer, SingaporezbMATHCrossRefGoogle Scholar
  38. Sakar MG, Akgül A, Baleanu D (2017) On solutions of fractional Riccati differential equations. Adv Differ Equ 39:1–10MathSciNetzbMATHGoogle Scholar
  39. Sakar MG, Saldır O, Erdogan F (2018) An iterative approximation for time-fractional Cahn–Allen equation with reproducing kernel method. Comput Appl Math 37(5):5951–5964MathSciNetzbMATHCrossRefGoogle Scholar
  40. Sakar MG, Saldır O, Akgül A (2019) A novel technique for fractional Bagley-Torvik equation. Proc Natl Acad Sci India Sect A Phys Sci 89(3):539–545MathSciNetCrossRefGoogle Scholar
  41. Schwartz L (1964) Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J Anal Math 13:115–256zbMATHCrossRefGoogle Scholar
  42. Shuangping T, Shuangbin C (2002) Existence and uniqueness of solutions to nonlinear Kawahara equations. Chin Ann Math Ser A 23(2):221–228MathSciNetzbMATHGoogle Scholar
  43. Wang Y, Du M, Tan F, Li Z, Nie T (2013) Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl Math Comput 219:5918–5925MathSciNetzbMATHGoogle Scholar
  44. Yao H (2011) Reproducing Kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition. Numer Methods Partial Differ Equ 27(4):867–886MathSciNetzbMATHCrossRefGoogle Scholar
  45. Zarebnia M, Aghili A (2016) A new approach for numerical solution of the modified Kawahara equation. J Nonlinear Anal Appl 2016(2):48–59Google Scholar
  46. Zaremba S (1908) Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le problème hydrodynamique. Bulletin International de l’Académie des Sciences de Cracovie, pp 125–195Google Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  • Onur Saldır
    • 1
    Email author
  • Mehmet Giyas Sakar
    • 1
  • Fevzi Erdogan
    • 2
  1. 1.Department of Mathematics, Faculty of SciencesVan Yuzuncu Yil UniversityVanTurkey
  2. 2.Department of Statistics, Faculty of SciencesVan Yuzuncu Yil UniversityVanTurkey

Personalised recommendations