Advertisement

Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors

  • Chaoqian Li
  • Qilong LiuEmail author
  • Yimin Wei
Article
  • 63 Downloads

Abstract

In this paper, we present the pseudospectrum for generalized tensor eigenvalues, and a set to locate this pseudospectrum. By the relations between H-eigenvalues (Z-eigenvalues) of tensors and generalized tensor eigenvalues, a pseudospectral localization for H-eigenvalues (Z-eigenvalues, respectively) is given to seek positive definite tensors surrounding a positive definite tensor.

Keywords

Pseudospectral localization Generalized tensor eigenvalues H-eigenvalues Z-eigenvalues Positive definiteness 

Mathematics Subject Classification

15A18 15A69 65F15 65F10 

Notes

Acknowledgements

We would like to thank Dr. Maolin Che and Dr. Xuezhong Wang for their useful discussions on this topic. Chaoqian Li is supported partly by the Shanghai Key Laboratory of Contemporary Applied Mathematics under Grant KBH1411209; the National Natural Science Foundation of China under Grant 11601473; the Applied Basic Research Programs of Science and Technology Department of Yunnan Province under Grant 2018FB001; Program for Excellent Young Talents in Yunnan University; Outstanding Youth Cultivation Project for Yunnan Province under Grant 2018YDJQ021; Yunnan Provincial Ten Thousands Plan Young Top Talents. Qilong Liu is supported by Doctoral Scientific Research Foundation of Guizhou Normal University in 2017 under Grant GZNUD [2017]26. Yimin Wei is supported by the National Natural Science Foundation of China under Grant 11771099 and Innovation Program of Shanghai Municipal Education Commission.

References

  1. Bose N, Kamat P (1974) Algorithm for stability test of multidimensional filters. IEEE Trans Acoust Speech Signal Process 22(5):307–314CrossRefGoogle Scholar
  2. Bose N, Modarressi A (1976) General procedure for multivariable polynomial positivity test with control applications. IEEE Trans Auto Control 21(5):696–701MathSciNetzbMATHCrossRefGoogle Scholar
  3. Brauer A et al (1947) Limits for the characteristic roots of a matrix. II. Duke Math J 14(1):21–26MathSciNetzbMATHCrossRefGoogle Scholar
  4. Brualdi RA (1982) Matrices eigenvalues, and directed graphs. Linear Multilinear Algebra 11(2):143–165MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bu C, Wei Y, Sun L, Zhou J (2015) Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl 480:168–175MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bu C, Jin X, Li H, Deng C (2017) Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl 512:234–248MathSciNetzbMATHCrossRefGoogle Scholar
  7. Chang KC, Pearson K, Zhang T (2008) Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci 6(2):507–520MathSciNetzbMATHCrossRefGoogle Scholar
  8. Chang KC, Pearson K, Zhang T (2009) On eigenvalue problems of real symmetric tensors. J Math Anal Appl 350(1):416–422MathSciNetzbMATHCrossRefGoogle Scholar
  9. Che M, Li G, Qi L, Wei Y (2017a) Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems. Linear Algebra Appl 533:536–572MathSciNetzbMATHCrossRefGoogle Scholar
  10. Che M, Qi L, Wei Y (2017b) Iterative algorithms for computing us-and u-eigenpairs of complex tensors. J Comput Appl Math 317:547–564MathSciNetzbMATHCrossRefGoogle Scholar
  11. Chen H, Qi L (2015) Positive definiteness and semi-definiteness of even order symmetric cauchy tensors. J Ind Manag Optim 11(4):1263–1274MathSciNetzbMATHCrossRefGoogle Scholar
  12. Chen Y, Dai Y, Han D, Sun W (2013) Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J Imaging Sci 6(3):1531–1552MathSciNetzbMATHCrossRefGoogle Scholar
  13. Ching WK, Ng MK, Ching W (2006) Markov chains: models, algorithms and applications (international series in operations research & management science). Springer, BerlinGoogle Scholar
  14. Cui CF, Dai YH, Nie J (2014) All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl 35(4):1582–1601MathSciNetzbMATHCrossRefGoogle Scholar
  15. De Silva V, Lim LH (2008) Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl 30(3):1084–1127MathSciNetzbMATHCrossRefGoogle Scholar
  16. Deng C, Li H, Bu C (2018) Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors. Linear Algebra Appl 556:55–69MathSciNetzbMATHCrossRefGoogle Scholar
  17. Ding W, Wei Y (2015) Generalized tensor eigenvalue problems. SIAM J Matrix Anal Appl 36(3):1073–1099MathSciNetzbMATHCrossRefGoogle Scholar
  18. Ding W, Qi L, Wei Y (2013) M-tensors and nonsingular M-tensors. Linear Algebra Appl 439(10):3264–3278MathSciNetzbMATHCrossRefGoogle Scholar
  19. Ding W, Hou Z, Wei Y (2016) Tensor logarithmic norm and its applications. Numer Linear Algebra 23(6):989–1006MathSciNetzbMATHCrossRefGoogle Scholar
  20. Friedland S, Mehrmann V, Miedlar A, Nkengla M (2011) Fast low rank approximations of matrices and tensors. Electron J Linear Algebra 22(1):67MathSciNetzbMATHCrossRefGoogle Scholar
  21. Fu M (1998) Comments on “a procedure for the positive definiteness of forms of even order”. IEEE Trans Auto Control 43(10):1430zbMATHCrossRefGoogle Scholar
  22. Gadenz R, Li C (1964) On positive definiteness of quartic forms of two variables. IEEE Trans Auto Control 9(2):187–188CrossRefGoogle Scholar
  23. Gershgorin SA (1931) Uber die abgrenzung der eigenwerte einer matrix. Izv Akad Nauk SSSR Ser Mat 6:749–754zbMATHGoogle Scholar
  24. Golub G, Loan CV (2013) Matrix computations (4th edn), Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, BaltimoreGoogle Scholar
  25. Hasan MA, Hasan AA (1996) A procedure for the positive definiteness of forms of even order. IEEE Trans Auto Control 41(4):615–617MathSciNetzbMATHCrossRefGoogle Scholar
  26. Hillar CJ, Lim LH (2013) Most tensor problems are np-hard. J ACM 60(6):45MathSciNetzbMATHCrossRefGoogle Scholar
  27. Hu S, Qi L (2012) Algebraic connectivity of an even uniform hypergraph. J Comb Optim 24(4):564–579MathSciNetzbMATHCrossRefGoogle Scholar
  28. Hu S, Qi L (2014) The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl Math 169:140–151MathSciNetzbMATHCrossRefGoogle Scholar
  29. Hu S, Huang Z, Ni H, Qi L (2012) Positive definiteness of diffusion kurtosis imaging. Inverse Probl Imaging 6:57–75MathSciNetzbMATHCrossRefGoogle Scholar
  30. Hu S, Qi L, Shao JY (2013) Cored hypergraphs, power hypergraphs and their Laplacian h-eigenvalues. Linear Algebra Its Appl 439(10):2980–2998MathSciNetzbMATHCrossRefGoogle Scholar
  31. Hu S, Qi L, Zhang G (2016) Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys Rev A 93(1):012304MathSciNetCrossRefGoogle Scholar
  32. Hua B, Ni GY, Zhang MS (2017) Computing geometric measure of entanglement for symmetric pure states via the Jacobian sdp relaxation technique. J Oper Res Soc China 5(1):111–121MathSciNetzbMATHCrossRefGoogle Scholar
  33. Kannan MR, Shaked-Monderer N, Berman A (2015) Some properties of strong h-tensors and general h-tensors. Linear Algebra Appl 476:42–55MathSciNetzbMATHCrossRefGoogle Scholar
  34. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500MathSciNetzbMATHCrossRefGoogle Scholar
  35. Kolda TG, Mayo JR (2011) Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl 32(4):1095–1124MathSciNetzbMATHCrossRefGoogle Scholar
  36. Kolda TG, Mayo JR (2014) An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J Matrix Anal Appl 35(4):1563–1581MathSciNetzbMATHCrossRefGoogle Scholar
  37. Kostić V, Cvetković L, Varga RS (2009) Geršgorin-type localizations of generalized eigenvalues. Numer Linear Algebra 16(11–12):883–898MathSciNetzbMATHCrossRefGoogle Scholar
  38. Kostić V, Cvetković L, Cvetković DL (2016) Pseudospectra localizations and their applications. Numer Linear Algebra 23(2):356–372MathSciNetzbMATHCrossRefGoogle Scholar
  39. Ku W (1965) Explicit criterion for the positive definiteness of a general quartic form. IEEE Trans Auto Control 10(3):372–373CrossRefGoogle Scholar
  40. Li C, Li Y (2015) Double b-tensors and quasi-double B-tensors. Linear Algebra Appl 466:343–356MathSciNetzbMATHCrossRefGoogle Scholar
  41. Li C, Li Y (2016) An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors. Linear Multilinear A 64(4):587–601MathSciNetzbMATHCrossRefGoogle Scholar
  42. Li C, Li Y, Kong X (2014a) New eigenvalue inclusion sets for tensors. Numer Linear Algebra 21(1):39–50MathSciNetzbMATHCrossRefGoogle Scholar
  43. Li C, Wang F, Zhao J, Zhu Y, Li Y (2014b) Criterions for the positive definiteness of real supersymmetric tensors. J Comput Appl Math 255:1–14MathSciNetzbMATHCrossRefGoogle Scholar
  44. Li C, Qi L, Li Y (2015) MB-tensors and MB\(_0\)-tensors. Linear Algebra Appl 484:141–153CrossRefMathSciNetzbMATHGoogle Scholar
  45. Li C, Jiao A, Li Y (2016) An S-type eigenvalue localization set for tensors. Linear Algebra Appl 493:469–483MathSciNetzbMATHCrossRefGoogle Scholar
  46. Li W, Ng MK (2014) On the limiting probability distribution of a transition probability tensor. Linear Multilinear A 62(3):362–385MathSciNetzbMATHCrossRefGoogle Scholar
  47. Lim LH (2005) Singular values and eigenvalues of tensors: a variational approach. In: 1st IEEE international workshop on computational advances in multi-sensor adaptive processing, 2005. IEEE, pp 129–132Google Scholar
  48. Lim LH (2008) Spectrum and pseudospectrum of a tensor. University of California, BerkeleyGoogle Scholar
  49. Liu L, Wu W (2006) Dynamical system for computing largest generalized eigenvalue. In: International symposium on neural networks. Springer, pp 399–404Google Scholar
  50. Liu Y, Zhou G, Ibrahim NF (2010) An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J Comput Appl Math 235(1):286–292MathSciNetzbMATHCrossRefGoogle Scholar
  51. Ni G, Bai M (2016) Spherical optimization with complex variablesfor computing us-eigenpairs. Comput Optim Appl 65(3):799–820MathSciNetzbMATHCrossRefGoogle Scholar
  52. Ni G, Qi L, Bai M (2014) Geometric measure of entanglement and u-eigenvalues of tensors. SIAM J Matrix Anal Appl 35(1):73–87MathSciNetzbMATHCrossRefGoogle Scholar
  53. Ni Q, Lq Qi, Wang F (2008) An eigenvalue method for the positive definiteness identification problem. IEEE Trans Autom Control 53(5):1096–1107CrossRefGoogle Scholar
  54. Nie J, Wang L (2014) Semidefinite relaxations for best rank-1 tensor approximations. SIAM J Matrix Anal Appl 35(3):1155–1179MathSciNetzbMATHCrossRefGoogle Scholar
  55. Qi L (2005) Eigenvalues of a real supersymmetric tensor. J Symb Comput 40(6):1302–1324MathSciNetzbMATHCrossRefGoogle Scholar
  56. Qi L (2011) The best rank-one approximation ratio of a tensor space. SIAM J Matrix Anal Appl 32(2):430–442MathSciNetzbMATHCrossRefGoogle Scholar
  57. Qi L, Luo Z (2017) Tensor analysis: spectral theory and special tensors, vol 151. SIAM, PhiladelphiazbMATHCrossRefGoogle Scholar
  58. Qi L, Song Y (2014) An even order symmetric b tensor is positive definite. Linear Algebra Appl 457:303–312MathSciNetzbMATHCrossRefGoogle Scholar
  59. Qi L, Wang Y, Wu EX (2008) D-eigenvalues of diffusion kurtosis tensors. J Comput Appl Math 221(1):150–157MathSciNetzbMATHCrossRefGoogle Scholar
  60. Qi L, Yu G, Wu EX (2010a) Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci 3(3):416–433MathSciNetzbMATHCrossRefGoogle Scholar
  61. Qi L, Yu G, Wu EX (2010b) Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci 3(3):416–433MathSciNetzbMATHCrossRefGoogle Scholar
  62. Sang C (2019) A new Brauer-type Z-eigenvalue inclusion set for tensors. Numer Algorithms 80(3):781–794MathSciNetzbMATHCrossRefGoogle Scholar
  63. Song Y, Qi L (2014) Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl 451:1–14MathSciNetzbMATHCrossRefGoogle Scholar
  64. Song Y, Qi L (2015) Properties of some classes of structured tensors. J Optim Theory Appl 165(3):854–873MathSciNetzbMATHCrossRefGoogle Scholar
  65. Sun L, Ji S, Ye J (2008) Hypergraph spectral learning for multi-label classification. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 668–676Google Scholar
  66. Varga RS (2010) Geršgorin and his circles, vol 36. Springer Science & Business Media, BerlinzbMATHGoogle Scholar
  67. Wang F, Qi L (2005) Comments on “explicit criterion for the positive definiteness of a general quartic form”. IEEE Trans Autom Control 50(3):416–418MathSciNetzbMATHCrossRefGoogle Scholar
  68. Wang G, Zhou G, Caccetta L (2017) Z-eigenvalue inclusion theorems for tensors. Discrete Cont Dyn-B 22:187–198MathSciNetzbMATHGoogle Scholar
  69. Wang X, Navasca C (2018) Low-rank approximation of tensors via sparse optimization. Numer Linear Algebra 25(2):e2136MathSciNetzbMATHCrossRefGoogle Scholar
  70. Wang Y, Wang G (2017) Two s-type z-eigenvalue inclusion sets for tensors. J Inequal Appl 2017(1):152MathSciNetzbMATHCrossRefGoogle Scholar
  71. Wei TC, Goldbart PM (2003) Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A 68(4):042307CrossRefGoogle Scholar
  72. Wei Y, Ding W (2016) Theory and computation of tensors: multi-dimensional arrays. Academic Press, CambridgezbMATHGoogle Scholar
  73. Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRefGoogle Scholar
  74. Zhang L, Qi L, Zhou G (2014) M-tensors and some applications. SIAM J Matrix Anal Appl 35(2):437–452MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsYunnan UniversityYunnanPeople’s Republic of China
  2. 2.School of Mathematical SciencesGuizhou Normal UniversityGuiyangPeople’s Republic of China
  3. 3.School of Mathematics Sciences and Shanghai Key Laboratory of Contemporary Applied MathematicsFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations