A numerical method for solving Volterra integral equations of the third kind by multistep collocation method

  • F. Shayanfard
  • H. Laeli DastjerdiEmail author
  • F. M. Maalek Ghaini


In this paper a multistep collocation method for solving Volterra integral equations of the third kind is explained and analyzed. The structure of the method, its solvability and convergence analysis are investigated. Moreover to show the applicability of the presented method and to confirm our theoretical results some numerical examples are given.


Volterra integral equations of the third kind Collocation method Multistep collocation method 

Mathematics Subject Classification

45A05 45D05 45E99 



  1. Atkinson KE (1989) An introduction to numerical analysis, 2nd edn. John Wiley, New YorkzbMATHGoogle Scholar
  2. Brunner H (2004) Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  3. Brunner H (2017) Volterra integral equations, an introduction to theory and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Conte D, Paternoster B (2009) Multistep collocation methods for Volterra integral equations. Appl Numer Math 59:1721–1736MathSciNetCrossRefGoogle Scholar
  5. Fazeli S, Hojjati G, Shahmorad S (2012) Multistep Hermite collocation methods for solving Volterra integral equations. Numer Algorithm 60(1):27–50MathSciNetCrossRefGoogle Scholar
  6. Seyed AS, Yang ZW, Brunner H (2015) Existence, uniqueness and regularity of solutions for a class of third kind Volterra integral equations. J Integral Equ Appl 27:325–342MathSciNetCrossRefGoogle Scholar
  7. Seyed AS, Yang ZW, Brunner H (2017) Collocation methods for third-kind VIEs, IMA. J Numer Anal 37:1104–1124MathSciNetzbMATHGoogle Scholar
  8. Song H, Yang ZW, Brunner H (2019) Analysis of collocation methods for nonlinear Volterra integral equations of the third-kind. Calcolo 56:7.
  9. Stoer J, Bulirsch R (2002) Introduction to numerical analysis. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  • F. Shayanfard
    • 1
  • H. Laeli Dastjerdi
    • 2
    Email author
  • F. M. Maalek Ghaini
    • 1
  1. 1.Applied Mathematics Group, Faculty of MathematicsYazd UniversityYazdIran
  2. 2.Department of MathematicsFarhangian UniversityTehranIran

Personalised recommendations