Boundary functions determination in an inverse time fractional heat conduction problem

  • S. Toubaei
  • M. GarshasbiEmail author
  • P. Reihani


In this study, we propose an effective approach for the numerically solution of a class of one-dimensional nonlinear inverse time fractional heat conduction problems. The boundary heat fluxes are considered as unknown functions of the boundary temperatures. A numerical method based on the finite difference and mollification approaches is developed to determine the unknown boundary functions. The stability and convergence of the numerical method are proved. Four test problems are conducted to illustrate the ability of the numerical algorithm.


Time fractional Inverse problem Mollification Marching method Boundary functions 

Mathematics Subject Classification

65M32 65M12 65M06 



The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.


  1. Berkowitz B, Scher H, Silliman SE (2000) Anomalous transport in laboratory-scale, heterogeneous porusmedia. Water Resour Res 36:149–158CrossRefGoogle Scholar
  2. Chechkin AV, Gorenflo R, Sokolov IM, Gonchar VY (2003) Distributed order time fractional diffusion equation. Fract Calc Appl Anal 6:259–279MathSciNetzbMATHGoogle Scholar
  3. Chechkin AV, Gorenflo R, Sokolov IM (2005) Fractional diffusion in inhomogeneous media. J Phys A Math Gen 38:679–684MathSciNetCrossRefGoogle Scholar
  4. Cheng J, Nakagawa J, Yamamoto M, Yamazaki T (2009) Uniqueness in an inverse problem for a onedimensional fractional diffusion equation. Inverse Probl 25:115002CrossRefGoogle Scholar
  5. Dehghana M, Yousefi SA, Rashedi K (2013) Ritz–Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via Bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng 21(3):500–523MathSciNetCrossRefGoogle Scholar
  6. Garshasbi M, Dastour H (2015) Estimation of unknown boundary functions in an inverse heat conduction problem using a mollified marching scheme. Numer Algorithms 68:769–790MathSciNetCrossRefGoogle Scholar
  7. Garshasbi M, Dastour H (2016) A mollified marching solution of an inverse ablation-type moving boundary problem. Comput Appl Math 35:6–73MathSciNetCrossRefGoogle Scholar
  8. Garshasbi M, Reihani P, Dastour H (2012) A stable numerical solution of a class of semi-linear Cauchy problems. J Adv Res Dyn Control Syst 4:56–67MathSciNetGoogle Scholar
  9. Giona M, Gerbelli S, Roman HE (1992) Fractional diffusion equation and relaxation in complex viscoelastic materials. Phys A Stat Mech Appl 191:449–453CrossRefGoogle Scholar
  10. Hatano Y, Hatano N (1998) Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour Res 34:1027–33CrossRefGoogle Scholar
  11. Jalalvand M, Jazbi B, Mokhtarzadeh MR (2013) A finite difference method for the smooth solution of linear Volterra integral equations. Int J Non-linear Anal Appl 4(2):1–10zbMATHGoogle Scholar
  12. Jin BB, Rundell W (2012) An inverse problem for a one dimensional time fractional diffusion problem. Inverse Probl 28:075010MathSciNetCrossRefGoogle Scholar
  13. Lin Y, Xu C (2007) Finite difference-spectral approximation for the time-fractional diffusion equation. J Comput Phys 225:1533–1552MathSciNetCrossRefGoogle Scholar
  14. Luchko Y (2009) Maximum principle for the generalized time-fractional diffusion equation. J Math Anal Appl 351:218–223MathSciNetCrossRefGoogle Scholar
  15. Luchko Y (2011) Maximum principle and its application for the time-fractional diffusion equations. Fract Calc Appl Anal 14:110–124MathSciNetzbMATHGoogle Scholar
  16. Mainadri F (1996) The fundamental solutions for the fractional diffusion-wave equation. Appl Math Lett 9:23–28MathSciNetCrossRefGoogle Scholar
  17. Metzler R, Klafter J (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetCrossRefGoogle Scholar
  18. Murio DA (2002) Mollification and space marching. In: Woodbury K (ed) Inverse engineering handbook. CRC Press, Boca RatonGoogle Scholar
  19. Murio DA (2006) On the stable numerical evaluation of Caputo fractional derivatives. Comput Math Appl 51:1539–1550MathSciNetCrossRefGoogle Scholar
  20. Murio DA (2007) Implicit finite difference approximation for time fractional diffusion equations. Comput Math Appl 56:1138–1145MathSciNetCrossRefGoogle Scholar
  21. Murio DA (2008) Time fractional IHCP with Caputo fractional derivatives. Comput Math Appl 56:2371–2381MathSciNetCrossRefGoogle Scholar
  22. Murio DA, Mejia CE (2008) Generalized time fractional IHCP with Caputo fractional derivatives. J Phys 135:1–8Google Scholar
  23. Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Stat Solidi B 133:425–30CrossRefGoogle Scholar
  24. Podlubny I (1999) Fractional differential equations. Academic Press, San DiegozbMATHGoogle Scholar
  25. Povstenko Y (2015) Linear fractional diffusion-wave equation for scientists and engineers. Springer International Publishing, ChamCrossRefGoogle Scholar
  26. Roman HE, Alemany PA (1994) Continuous-time random walks and the fractional diffusion equation. J Phys A Math Gen 27:3407–3410MathSciNetCrossRefGoogle Scholar
  27. Safarzade A, Heidari H (2019) Finite time mix synchronization of delay fractional-order chaotic systems. Glob Anal Discr Math 3(1):33–52Google Scholar
  28. Sakamoto K, Yamamoto M (2011) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl 382(1):426–447MathSciNetCrossRefGoogle Scholar
  29. Sakamoto K, Yamamoto M (2010) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. In: Preprint UTMS, 2010–2014Google Scholar
  30. Shidfar A, Karamali GR, Damirchi J, Reihani P (2006) An inverse heat conduction problem with a nonlinear source term. Nonlinear Anal Theory Methods Appl 65:615–621MathSciNetCrossRefGoogle Scholar
  31. Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55:48–54CrossRefGoogle Scholar
  32. Wei T, Zhang ZQ (2013) Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng Anal Bound Elem 37:23–31MathSciNetCrossRefGoogle Scholar
  33. Zhang Y, Xu X (2011) Inverse source problem for a fractional diffusion equation. Inverse Probl 27:035010MathSciNetCrossRefGoogle Scholar
  34. Zhou L, Selim HM (2003) Application of the fractional advection–dispersion equations in porous media. Soil Sci Soc Am J 67(4):1079–1084CrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Department of MathematicsAhvaz Branch, Islamic Azad UniversityAhvazIran
  2. 2.Department of MathematicsKhuzestan Science and Research Branch, Islamic Azad UniversityAhvazIran
  3. 3.School of MathematicsIran University of Science and TechnologyTehranIran
  4. 4.Department of MathematicsPayame Noor UniversityTehranIran

Personalised recommendations