Advertisement

Adjoint computational methods for 2D inverse design of linear transport equations on unstructured grids

  • M. Morales-HernándezEmail author
  • E. Zuazua
Article
  • 72 Downloads

Abstract

We address the problem of inverse design of linear hyperbolic transport equations in 2D heterogeneous media. We develop numerical algorithms based on gradient-adjoint methodologies on unstructured grids. While the flow equation is compulsorily solved by means of a second order upwind scheme so to guarantee sufficient accuracy, the necessity of using the same order of approximation when solving the sensitivity or adjoint equation is examined. Two test cases, including Doswell frontogenesis, are analysed. We show the convenience of using a low order method for the adjoint resolution, both in terms of accuracy and efficiency. An analytical explanation for this fact is also provided in the sense that, when employing higher order schemes for the adjoint problem, spurious high frequency numerical components slow down the convergence process.

Keywords

Linear transport Inverse design Sensitivity First and second order schemes Gradient descent method Adjoint 

Mathematics Subject Classification

35L04 49M04 93B00 

Notes

Acknowledgements

This work was done while the first author was a postdoctoral fellow of the team of the Advanced Grant NUMERIWAVES/FP7-246775 of the European Research Council. The second author was partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement NO: 694126-DyCon), the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), the ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government, the Air Force Office of Scientific Research under Award NO: FA9550-18-1-0242, the Marie Curie Training Action “ConFlex” SEP-210412102 and the ICON project of the French ANR.

References

  1. Carpentieri G, Koren B, van Tooren MJL (2007) Adjoint-based aerodynamic shape optimization on unstructured meshes. J Comput Phys 224:267–287MathSciNetCrossRefGoogle Scholar
  2. Castro C, Lozano C, Palacios F, Zuazua E (2007) Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. AIAA J 45–9:2125–2139CrossRefGoogle Scholar
  3. Castro C, Palacios F, Zuazua E (2008) An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks. Math Models Methods Appl Sci 18:369–416MathSciNetCrossRefGoogle Scholar
  4. Ciarlet PG (1982) Introduction à l’analyse numérique matricielle et à l’optimisation, Collection Mathématiques appliquées pour la maîtriseGoogle Scholar
  5. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann (in German) 100(1):32–74CrossRefGoogle Scholar
  6. Doǧan G, Morin P, Nochetto RH, Verani M (2007) Discrete gradient flows for shape optimization and applications. Comput Methods Appl Mech Eng 196:3898–3914MathSciNetCrossRefGoogle Scholar
  7. Doswell CA (1984) A kinematic analysis of frontogenesis associated with a nondivergent vortex. J Atmos Sci 41:1242–1248CrossRefGoogle Scholar
  8. Ervedoza S, Zuazua E (2013) On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics, XVII, ISBN 978-1-4614-5808-1Google Scholar
  9. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combus 65:393–415CrossRefGoogle Scholar
  10. Glowinski R (1992) Ensuring well-posedness by analogy; stokes problem and boundary control for the wave equation. J Comput Phys 103–2:189–221MathSciNetCrossRefGoogle Scholar
  11. Godlewski E, Raviart PA (1996) Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences. Springer, BerlinGoogle Scholar
  12. Herty M, Kurganov A, Kurochkin D (2015) Numerical method for optimal control problems governed by nonlinear hyperbolic systems of PDE’s. Commun Math Sci 13(1):15–48MathSciNetCrossRefGoogle Scholar
  13. Huang H, Ascher U (2014) Faster gradient descent and the efficient recovery of images. Vietnam J Math 42:115–131MathSciNetCrossRefGoogle Scholar
  14. Hubbard ME (1999) Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J Comput Phys 155:54–74MathSciNetCrossRefGoogle Scholar
  15. Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3–3:233–260CrossRefGoogle Scholar
  16. Li S, Petzold L (2004) Adjoint sensitivity analysis for time-dependent partial differential equations with adaptative mesh refinement. J Comput Phys 198:310–325MathSciNetCrossRefGoogle Scholar
  17. Morales-Hernández M, García-Navarro P, Burguete J, Brufau P (2013) A conservative strategy to couple 1D and 2D models for shallow water flow simulation. Comput Fluids 81:26–44MathSciNetCrossRefGoogle Scholar
  18. Nadarajah SK, Jameson A (2000) A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In: Proceedings of the 38th AIAA aerospace sciences meeting and exhibit, AIAA 2000-0667Google Scholar
  19. Nocedal J, Wright SJ (1999) Numerical optimization. Springer series in operations research, Springer, BerlinCrossRefGoogle Scholar
  20. Nochetto RH, Paolini M, Verdi C (1996) A dynamic mesh algorithm for curvature dependent evolving interfaces. J Comput Phys 123:296–310MathSciNetCrossRefGoogle Scholar
  21. Peter JEV, Dwight RP (2010) Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput Fluids 39:373–391MathSciNetCrossRefGoogle Scholar
  22. Power PW, Piggott MD, Fang F, Gorman GJ, Pain CC, Marshall DP, Goddard AJH, Navon IM (2006) Adjoint goal-based error norms for adaptive mesh ocean modelling. Ocean Model 15(1–2):3–38.  https://doi.org/10.1016/j.ocemod.2006.05.001 CrossRefGoogle Scholar
  23. Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom Theory Appl 22:21–74MathSciNetCrossRefGoogle Scholar
  24. Sweby PK (1984) High resolution schemes using flux-limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011MathSciNetCrossRefGoogle Scholar
  25. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, BerlinCrossRefGoogle Scholar
  26. Ulbrich S (2001) Optimal control of nonlinear hyperbolic conservation laws with source terms, Habilitation Thesis, Zentrum Mathematik, Technische UniversitYat Munchen, GermanyGoogle Scholar
  27. van Leer B (1979) Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J Comput Phys 32:101–136CrossRefGoogle Scholar
  28. Zuazua E (2002) Controllability of partial differential equations and its semi-discrete approximations. Discrete Contin Dyn Syst 8(2):469–513MathSciNetCrossRefGoogle Scholar
  29. Zuazua E (2005) Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev 47(2):197–243MathSciNetCrossRefGoogle Scholar
  30. Zuazua E (2007) Controllability and observability of partial differential equations: some results and open problems. In: Handbook of differential equations: evolutionary equations, vol 3, chap 7. Elsevier, pp 527–621Google Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Fluid MechanicsLIFTEC-EINA,CSIC-Universidad ZaragozaZaragozaSpain
  2. 2.Department of Soil and Water, EEAD-CSICZaragozaSpain
  3. 3.DeustoTech, University of DeustoBilbaoSpain
  4. 4.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  5. 5.Facultad Ingeniería, Universidad de DeustoBilbaoSpain

Personalised recommendations